Chi-Square Tests

Keegan Korthauer

Department of Statistics

UW Madison

General HT for Proportions

- Hypothesis tests for proportions we've studied so far:
 - success probability p when we observe X successes in a collection of n independent Bernoulli trials (6.3)
 - difference in success probability $p_x p_y$ when we observe X out of n_x successes in one sample and Y out of n_y in the other (6.6)
- In these situations we are confined to Bernoulli trials
 - only two possible outcomes for each trial
 - examples: coin flip, voting between two candidates
- What if there are more than two possible outcomes for each trial?

Chi-Square Test Motivation

- We want to check if a die is fair (all sides have equal chance of landing face-up)
- Experiment throwing the die N times (e.g. N=600) and observe the number of times each side (numbered from 1 to 6) comes up:

Category	Observed
1	115
2	97
3	91
4	101
5	110
6	86
Total	600

- Generalization of a Bernoulli trial multinomial trial
- Does this die seem to be fair?

Multinomial Trial

- Generalization of the Bernoulli trial to more than two possible outcomes
- Bernoulli Trial: one parameter p = success probability
- Multinomial Trial: k parameters $p_1,...,p_k$ represent the probabilities of each of the k possible outcomes
 - Sum of p_1 +...+ p_k = 1
 - Models discrete random variables with k possible categories
 - Example: roll of a die has 6 possible outcomes

Hypothesis Test for the Die Example

- Want to test H₀: the die is fair versus H₁: the die is not fair
- Think of the die roll as a multinomial trial with 6 possible outcomes, and probabilities $p_1,...,p_6$
- Under the null hypothesis, each side is equally likely to come up, which means:

$$H_0$$
: $p_1 = p_2 = p_3 = p_4 = p_5 = p_6 = 1/6$

 We want a test statistic that will measure the deviation what we expect under the null hypothesis from what we actually observed

Hypothesis Test for the Die Example

- Under the null hypothesis, we expect 1/6 of the total die rolls to show each number
- Out of 600 rolls, we expect 100 of each number:

Category	Observed	Expected
1	115	100
2	97	100
3	91	100
4	101	100
5	110	100
6	86	100
Total	600	600

Idea of the test statistic: Add up the squared deviations of the observed and expected values

Chi-Square Test Statistic

- Let N be the total number of trials for which we have measured a categorical variable with k categories
- Measure the deviation of the expected from the observed counts:

$$\chi^{2} = \sum_{i=1}^{k} \frac{(O_{i} - E_{i})^{2}}{E_{i}}$$

- k is the number of possible outcomes in the multinomial trial
- O_i is the number of **observed** samples in category i
- E_i is the **expected** number of samples in category i
- The larger the value χ^2 , the stronger the evidence against H₀
- Under certain conditions, χ² has a chi-square distribution which we can utilize to obtain p-values

Chi-square Distribution

- Parameterized by the degrees of freedom (just like the t)
- Right-skewed distribution
- Defined for nonnegative numbers
- Under H₀ the χ² test statistic is approximately chi-square distributed with k-1 df when expected counts are large
- Find p-value using Table A.7
- Only one-sided tests (only care if test statistic is large – right tail)

Null Distribution of χ² Test Statistic

- We do not have an exact distribution for χ² there is only a good approximate distribution when the expected counts are large:
 - Rule of thumb: expected counts in each category are greater than or equal to 5
- Note the abuse of notation $\chi^2 \sim \chi^2_{k-1}$
 - "the chi-square test statistic has a chi-square distribution with k-1 degrees of freedom"
 - We will use χ^2 to denote the test statistic
 - We will use χ^2_{k-1} to denote the distribution

How to Use a χ^2 Table (A.7)

TABLE A.7 Upper percentage points for the χ^2 distribution

	α									
ν	0.995	0.99	0.975	0.95	0.90	0.10	0.05	0.025	0.01	0.005
1	0.000	0.000	0.001	0.004	0.016	2.706	3.841	5.024	6.635	7.879
2	0.010	0.020	0.051	0.103	0.211	4.605	5.991	7.378	9.210	10.597
3	0.072	0.115	0.216	0.352	0.584	6.251	7.815	9.348	11.345	12.838
4	0.207	0.297	0.484	0.711	1.064	7.779	9.488	11.143	13.277	14.860
5	0.412	0.554	0.831	1.145	1.610	9.236	11.070	12.833	15.086	16.750
6	0.676	0.872	1.237	1.635	2.204	10.645	12.592	14.449	16.812	18.548
7	0.989	1.239	1.690	2.167	2.833	12.017	14.067	16.013	18.475	20.278
8	1.344	1.646	2.180	2.733	3.490	13.362	15.507	17.535	20.090	21.955
9	1.735	2.088	2.700	3.325	4.168	14.684	16.919	19.023	21.666	23.589
10	2.156	2.558	3.247	3.940	4.865	15.987	18.307	20.483	23.209	25.188

Chi-square Test for the Die Example

Category	Observed	Expected
		-Apotton
1	115	100
2	97	100
3	91	100
4	101	100
5	110	100
6	86	100
Total	600	600

$$\chi^{2} = \frac{(115-100)^{2}}{100} + \frac{(97-100)^{2}}{100} + \frac{(91-100)^{2}}{100} + \frac{(101-100)^{2}}{100} + \frac{(110-100)^{2}}{100} + \frac{(86-100)^{2}}{100} + \frac{(86-100$$

- The expected number in each category is at least 5, so χ^2 has a chisquare distribution with k-1 degrees of freedom
- The p-value (using the table) is: $P(\chi_5^2 > 6.12) > 0.10$

Or using R can get a more precise estimate:

> pchisq(6.12, df=5, lower.tail=FALSE)
[1] 0.2947169

Chi-square Test for the Die Example

FIGURE 6.20 Probability density function of the χ_5^2 distribution. The observed value of the test statistic is 6.12. The upper 10% point is 9.236. Therefore the *P*-value is greater than 0.10.

Conclusion: Do not reject H_0 - We do not have evidence to suggest that the die is not fair.

Chi-Square Test for Independence- Motivation

- What if a sampled item can fall into one of several categories for two variables?
- Example Survey a random sample of N=200 students at UW
 - 1. Have you read the 'Hunger Games' series?
 - a) Yes, I have read the entire series
 - b) Yes, but only part of it
 - c) No, I have not read any of it
 - 2. What is your gender?
 - a) Male
 - b) Female
- Place the results of the survey in a 2 x 3 table:

	Yes, I have read the entire series	Yes, but only part of it	No, I haven't read any of it	Totals
Male				
Female				
Totals				200

Chi-Square Test for Independence - Motivation

- We want to test the null hypothesis that the proportion of students who have read all, part of, or none of the 'Hunger Games' series is independent of gender
- Say we observe that in our sample of size N=200 there are
 - 100 males and 100 females
 - 25 who read the entire series, 50 who read part of it, and 125 who read none
- Under the null hypothesis, how many males do we expect have read the entire series?

Recall that if X and Y are independent, then P(X,Y)=P(X)*P(Y)

	Yes, I have read the entire series	Yes, but only part of it	No, I haven't read any of it	Totals
Male				100
Female				100
Totals	25	50	125	200

Chi-Square Test for Independence - Motivation

Recall that if X and Y are independent, then P(X,Y)=P(X)*P(Y)

Then, under the null hypothesis

P(Read entire AND Male) = P(Read entire) * P(Male)

= (25/200) * (100/200)

= 0.125*0.5 = 0.0625

So the expected **count** is 0.0625*N = 0.0625*200 = 12.5

	Yes, I have read the entire series	Yes, but only part of it	No, I haven't read any of it	Totals
Male	12.5	25	62.5	100
Female	12.5	25	62.5	100
Totals	25	50	125	200

$$E_{ij} = \frac{\text{Row } i \text{ total} \times \text{Column } j \text{ total}}{N}$$

Chi-Square Test for Independence - Idea

We want a test statistic that measures the deviation of the observed from the expected counts:

Expected

	Yes, I have read the entire series		No, I haven't read any of it	Totals
Male	12.5	25	62.5	100
Female	12.5	25	62.5	100
Totals	25	50	125	200

Observed

	Yes, I have read the entire series	Yes, but only part of it	No, I haven't read any of it	Totals
Male	8	16	76	100
Female	17	34	49	100
Totals	25	50	125	200

Chi-Square Test Statistic for Independence

- Let N be the total number of trials for which we have measured two categorical variables (correspond to rows and columns)
- Null hypothesis: Row variable is independent of Column variable

• Test statistic:
$$\chi^2 = \sum_{i=1}^{I} \sum_{j=1}^{J} \frac{(O_{ij} - E_{ij})^2}{E_{ij}}$$

- I and J are the number of rows and columns, respectively
- O_{ii} is the number of **observed** samples in row i, column j
- Eii is the **expected** number of samples in row i, column j
- When the expected count of each cell is at least 5, under the null hypothesis of independence $\chi^2 \sim \chi^2_{(I-1)^*(J-1)}$

Hunger Games Example

Compute the test statistic:

$$\chi^{2} = \frac{(8-12.5)^{2}}{12.5} + \frac{(16-25)^{2}}{25} + \frac{(76-62.5)^{2}}{62.5} + \frac{(17-12.5)^{2}}{12.5} + \frac{(34-25)^{2}}{25} + \frac{(49-62.5)^{2}}{62.5}$$

$$= 15.552$$

- Under the null hypothesis that reading Hunger Games is independent of gender, $\chi^2 \sim \chi^2_2$
 - there are two degrees of freedom because (I-1)*(J-1) = (2-1)*(3-1) = 2
- Using Table A.7: P-value = $P(\chi^2_2 > 15.552) < 0.005$ Using R: P-value = 0.00042

Chi-square Test for Homogeneity

- In the previous setting, the row and column totals were both random
 - We set out to sample 200 students; didn't know in advance how many males/females we would get, or how many had read the entire series
- Sometimes, either the row totals or column totals are fixed
 - if we had decided beforehand to sample 100 males and 100 females, the row totals would have been fixed
- If the row totals are fixed and the column totals are random:
 - We want to test the null hypothesis that the proportion in each column category is the same for each row category (Homogeneity)
 - Not quite the same as independence, but we can test for it in exactly the same way! (they are mathematically equivalent under the null)

Example 6.21 - Steel Pins

- Steel pins are sampled from four different machines
- The number of pins in each category ("Too Thin", "OK", or "Too Thick") is counted

TABLE 6.4 Observed numbers of pins in various categories with regard to a diameter specification

	Too Thin	ОК	Too Thick	Total	
Machine 1 Machine 2 Machine 3 Machine 4	10 34 12 10	102 161 79 60	8 5 9 10	120 200 100 80	Row totals are fixed
Total	66	402	32	500	

 H₀: the proportion of pins that are too thin, OK, or too thick are the same for all machines (homogeneity)

Steel Pin Example Continued

 H_0 : For each column j (j=1, 2, 3), $p_{1j}=p_{2j}=p_{3j}$

Each cell has an expected count of at least 5

TABLE 6.4 Observed numbers of pins in various categories with regard to a diameter specification

Expected values for Table 6.4

	Too Thin	ОК	Too Thick	Total		Too Thin	ОК	Too Thick	Total
Machine 1 Machine 2 Machine 3 Machine 4	10 34 12 10	102 161 79 60	8 5 9 10	120 200 100 80	Machine 1 Machine 2 Machine 3 Machine 4	15.84 26.40 13.20 10.56	96.48 160.80 80.40 64.32	7.68 12.80 6.40 5.12	120.00 200.00 100.00 80.00
Total	66	402	32	500	Total	66.00	402.00	32.00	500.00

$$\chi^{2} = \frac{(10 - 15.84)^{2}}{15.84} + \dots + \frac{(10 - 5.12)^{2}}{5.12}$$
$$= \frac{34.1056}{15.84} + \dots + \frac{23.8144}{5.12}$$
$$= 15.5844$$

Degrees of freedom =
$$(4-1)*(3-1) = 6$$

Table: p-value =
$$P(\chi_6^2 > 15.5844)$$

so $0.01 < p$ -value < 0.025

Chi-Square Test Summary

Let I be the number of rows and J be the number of columns in a table where the rows and columns represent categories of two variables of interest. Let O_{ii} be the observed count for row i and column j (out of N).

- 1. Set up the null and alternative hypotheses:
 - a) For a test of **independence** H_0 : Row variable is independent of column variable
 - b) For a test of **homogeneity** Let the row totals be fixed; H₀: proportion in each column category is the same for each row category
- 2. State the level of significance α you will use
- 3. Calculate the test statistic:

$$\chi^{2} = \sum_{i=1}^{I} \sum_{j=1}^{J} \frac{(O_{ij} - E_{ij})^{2}}{E_{ij}}$$

Where E_{ij} is the expected count in row i, column j under H_0

- 4. Assume H₀ is true and find the P-value: $P(\chi^2_{(I-1)^*(J-1)} > \chi^2)$
- 5. Make a conclusion based on the P-value

Example – Titanic Survival Rate

- There were 2201 people on board the *Titanic*
- We want to know if we can conclude that ticket type was dependent on survival using a significance level of 0.01

Ticket Type

Survival	Crew	First	Second	Third	Totals
Alive	212	202	118	178	710
Dead	673	123	167	528	1491
Totals	885	325	285	706	2201

Next

Hypothesis Tests for Variances: F-test

Power and Type I error

Multiple Testing Issues