(§5.1-5.3 Large-Sample Confidence Interval for Mean; Proportion; Small-Sample Interval for Mean)
$\S 5.4$ (Large-Sample) Confidence Inferences for the Difference of Two Means
§5.5 Confidence Inferences for the Difference of Two Proportions
(§5.6 Small-Sample Confidence Inferences for the Difference of Two Means)

5.4 Confidence Intervals for the Difference of Two Means

We compare two population means, μ_{X} and μ_{Y}, by studying their difference, $\mu_{X}-\mu_{Y}$. Notation:

	Population 1	Population 2
Variable	X	Y
Mean	μ_{X}	
Standard deviation		σ_{Y}
Sample size	n_{X}	
Sample mean	\bar{X}	
Sample standard deviation		s_{Y}

For inference about $\mu_{X}-\mu_{Y}$, use the statistic \qquad .

To find a confidence interval for $\mu_{X}-\mu_{Y}$, we need the distribution of \qquad . Recall for independent X and Y :

- (§2.5) $\mu_{X-Y}=$
- $(\S 2.5) \sigma_{X-Y}^{2}=$
- $(\S 2.5) \sigma_{\bar{X}}^{2}=$
- (§4.5) If $X \sim N\left(\mu_{X}, \sigma_{X}^{2}\right)$ and $Y \sim N\left(\mu_{Y}, \sigma_{Y}^{2}\right)$, then $X-Y \sim$
- (§4.11) For large n, the CLT says $\bar{X} \sim$

$$
(\approx)
$$

It follows that, for large n_{X} and $n_{Y}, \bar{X}-\bar{Y} \sim$ \qquad .

Confidence Intervals on the Difference of Two Means

Recall that many confidence intervals have the form

$$
\begin{aligned}
& (\text { point estimate }) \pm(\text { margin of error }) \\
= & (\text { point estimate }) \pm(\ldots \text { value for confidence }) \times[(\text { estimated or true }) \\
= & \hat{\theta} \pm(\text { table value for confidence }) \times \sigma_{\hat{\theta}}
\end{aligned}
$$

Derive a Confidence Interval

Here's our previous derivation of a confidence interval for a normally distributed statistic:

- Consider a statistic $\hat{\theta}$ as an estimator for a parameter θ, where $\hat{\theta} \sim N\left(\theta, \sigma^{2}\right)$
(Generalize because it's \qquad to write θ than \qquad , $\hat{\theta}$ than \qquad , and \qquad than $\left.\sqrt{\frac{\sigma_{X}^{2}}{n_{X}}+\frac{\sigma_{Y}^{2}}{n_{Y}}}.\right)$
- Let $z_{\alpha / 2}=$ the z-score cutting off a right tail area \qquad from $N(0,1)$ (as before), so $P\left(-z_{\alpha / 2}<Z<z_{\alpha / 2}\right)=$ \qquad (draw)
- Unstandardize using $Z=$ _ to get $P\left(-z_{\alpha / 2}<\frac{\hat{\theta}-\theta}{\sigma}<z_{\alpha / 2}\right)=1-\alpha$; solve in two ways:
- for $\hat{\theta}$ in the middle: $P\left(\theta-z_{\alpha / 2} \sigma<\hat{\theta}<\theta+z_{\alpha / 2} \sigma\right)=1-\alpha$ (pictured \qquad
- for θ in the middle: $P\left(\hat{\theta}-z_{\alpha / 2} \sigma<\theta<\hat{\theta}+z_{\alpha / 2} \sigma\right)=1-\alpha$ (draw)

That is, $\hat{\theta} \pm z_{\alpha / 2} \sigma$ contains \qquad for a proportion \qquad of random samples (see picture, below). It's the $100 \%(1-\alpha)$ confidence interval for θ.

The Case of a Difference of Two Means

Letting $\theta=$ \qquad and $\hat{\theta}=$ \qquad , gives the confidence interval we need:

Let $X_{1}, \cdots, X_{n_{X}}$ and $Y_{1}, \cdots, Y_{n_{Y}}$ be independent large random samples from populations with means μ_{X} and μ_{Y} and standard deviations σ_{X} and σ_{Y}. A $100 \%(1-\alpha)$ confidence interval for $\mu_{X}-\mu_{Y}$ is

$$
(\bar{X}-\bar{Y}) \pm z_{\alpha / 2} \sqrt{\frac{\sigma_{X}^{2}}{n_{X}}+\frac{\sigma_{Y}^{2}}{n_{Y}}}
$$

(We usually need to use $\sigma_{X} \approx$ \qquad and $\sigma_{Y} \approx$ \qquad .)
e.g. A crayon maker is comparing the effects of two yellow dyes on crayon brittleness. Dye B is more expensive than dye A, but might produce a stronger crayon. 40 crayons are tested with each dye, and the impact strength (in joules) is measured for each. The A strength averaged 2.6, with standard deviation 1.4. The B strength averaged 3.8, with standard deviation 1.2. Find a 99% confidence interval for the difference, $\mathrm{B}-\mathrm{A}$, in population strengths.

5.5 Confidence Intervals for the Difference of Two Proportions

We compare two population proportions, p_{X} and p_{Y}, by studying their difference, $p_{X}-p_{Y}$.
Notation:

	Population 1	Population 2
Success probability	p_{X}	p_{Y}
\#Trials	n_{X}	n_{Y}
\#Successes	X	Y
Sample proportion of successes	$\hat{p}_{X}=\frac{X}{n_{X}}$	$\hat{p}_{Y}=\frac{Y}{n_{Y}}$

For inference about $p_{X}-p_{Y}$, use the statistic \qquad .

To find a confidence interval for $p_{X}-p_{Y}$, we need the distribution of $\hat{p}_{X}-\hat{p}_{Y}$. Recall for independent X and Y :

- If $X \sim N\left(\mu_{X}, \sigma_{X}^{2}\right)$ and $Y \sim N\left(\mu_{Y}, \sigma_{Y}^{2}\right)$, then $X-Y \sim$
- If $X \sim \operatorname{Bin}(n, p)$, and $n p>10$ and $n(1-p)>10$, then $X \sim N($ \qquad , \qquad) (\approx; because CLT applies to $X=\sum_{i=1}^{n} B_{i}$, where $\left.B_{i} \sim \operatorname{Bernoulli}(p)\right)(\S 4.11)$

$$
\Longrightarrow \hat{p}=\frac{X}{n} \sim
$$

It follows that, for $n_{X} p_{X}>10, n_{X}\left(1-p_{X}\right)>10, n_{Y} p_{Y}>10$, and $n_{Y}\left(1-p_{Y}\right)>10$,

$$
\hat{p}_{X}-\hat{p}_{Y} \sim
$$

We need the standard deviation for inference about the unknown $p_{X}-p_{Y}$, but we don't know
\qquad or \qquad . If the \#successes and \#failures are more than \qquad in each sample, we can approximate them with \qquad and \qquad .

Confidence Intervals on the Difference of Two Proportions

Recall, again, that many confidence intervals have the form
(point estimate) \pm (margin of error)
$=($ point estimate $) \pm($ table value for confidence $) \times[($ estimated or true $)$ standard deviation of point estimate $]$ $=\hat{\theta} \pm($ table value for confidence $) \times \sigma_{\hat{\theta}}$

The Old Confidence Interval

If the \#successes and \#failures are more than 10 in each sample, then the old $100 \%(1-\alpha)$ confidence interval for $p_{X}-p_{Y}$ is

$$
\left(\hat{p}_{X}-\hat{p}_{Y}\right) \pm z_{\alpha / 2} \sqrt{\frac{\hat{p}_{X}\left(1-\hat{p}_{X}\right)}{n_{X}}+\frac{\hat{p}_{Y}\left(1-\hat{p}_{Y}\right)}{n_{Y}}}
$$

For small samples, this interval \qquad $p_{X}-p_{Y}$ for a proportion $1-\alpha$ of samples.

The New Plus-Four Confidence Interval

Recent research (2000) describes an improvement: add four fake observations, two successes and two failures, \qquad to each sample. (The $\S 5.2$ plus-four interval for a single proportion added \qquad successes and \qquad failures to the single sample.)

Let independent $X \sim \operatorname{Bin}\left(n_{X}, p_{X}\right)$ and $Y \sim \operatorname{Bin}\left(n_{Y}, p_{Y}\right)$. Define

$$
\tilde{n}_{X}=\ldots, \tilde{n}_{Y}=\ldots, \tilde{p}_{X}=\ldots, \text { and } \tilde{p}_{Y}=\square
$$

Then the $(100 \%)(1-\alpha)$ plus-four confidence interval for $p_{X}-p_{Y}$ is

$$
\left(\tilde{p}_{X}-\tilde{p}_{Y}\right) \pm z_{\alpha / 2} \sqrt{\frac{\tilde{p}_{X}\left(1-\tilde{p}_{X}\right)}{\tilde{n}_{X}}+\frac{\tilde{p}_{Y}\left(1-\tilde{p}_{Y}\right)}{\tilde{n}_{Y}}}
$$

This interval can be used if $n_{X}>4$ and $n_{Y}>4$, without regard for the \#successes and \#failures. (Since $\left(p_{X}-p_{Y}\right) \in[\ldots, \quad$, $]$, trim the interval if it extends outside $[\ldots, \ldots$.
e.g. A randomized double-blind experiment assigned 244 smokers who wanted to quit to receive nicotine patches and another 245 to receive patches and an antidepressant. After a year, 40 in the first group and 87 in the second had quit. Give a 99% plus-four confidence interval for the difference (treatment - control) in proportions of smokers who quit.

