(§5.1-5.3 Large-Sample Confidence Interval for Mean; Proportion; Small-Sample Interval for Mean)

§5.4 (Large-Sample) Confidence Inferences for the Difference of Two Means

§5.5 Confidence Inferences for the Difference of Two Proportions

(§5.6 Small-Sample Confidence Inferences for the Difference of Two Means)

5.4 Confidence Intervals for the Difference of Two Means

We compare two population means, μ_X and μ_Y , by studying their difference, $\mu_X - \mu_Y$. Notation:

	Population 1	Population 2
Variable	X	Y
Mean	μ_X	
Standard deviation		σ_Y
Sample size	n_X	
Sample mean	\bar{X}	
Sample standard deviation		s_Y

For inference about $\mu_X - \mu_Y$, use the statistic _____.

To find a confidence interval for $\mu_X - \mu_Y$, we need the distribution of _____. Recall for independent X and Y:

- (§2.5) $\mu_{X-Y} =$
- (§2.5) $\sigma_{X-Y}^2 =$
- (§2.5) $\sigma_{\bar{X}}^2 =$
- (§4.5) If $X \sim N(\mu_X, \sigma_X^2)$ and $Y \sim N(\mu_Y, \sigma_Y^2)$, then $X Y \sim$
- (§4.11) For large n, the CLT says $\bar{X} \sim$

It follows that, for large n_X and n_Y , $\bar{X} - \bar{Y} \sim$ ______

Confidence Intervals on the Difference of Two Means

Recall that many confidence intervals have the form

 $\begin{array}{l} (\text{point estimate}) \pm (\text{margin of error}) \\ = (\text{point estimate}) \pm (\underline{\qquad} \text{value for confidence}) \times [(\text{estimated or true}) \underline{\qquad} \text{of point estimate}] \\ = \hat{\theta} \pm (\text{table value for confidence}) \times \sigma_{\hat{\theta}} \end{array}$

 (\approx)

Derive a Confidence Interval

Here's our previous derivation of a confidence interval for a normally distributed statistic:

• Consider a statistic $\hat{\theta}$ as an estimator for a parameter θ , where $\hat{\theta} \sim N(\theta, \sigma^2)$

(Generalize because it's ______ to write θ than ______, $\hat{\theta}$ than ______, and _____ than $\sqrt{\frac{\sigma_X^2}{n_X} + \frac{\sigma_Y^2}{n_Y}}$.)

- Let $z_{\alpha/2}$ = the z-score cutting off a right tail area _____ from N(0,1) (as before), so $P(-z_{\alpha/2} < Z < z_{\alpha/2}) = \underline{\qquad} (draw)$
- Unstandardize using Z = to get $P(-z_{\alpha/2} < \frac{\hat{\theta} \theta}{\sigma} < z_{\alpha/2}) = 1 \alpha$; solve in two ways:
 - for $\hat{\theta}$ in the middle: $P(\theta z_{\alpha/2}\sigma < \hat{\theta} < \theta + z_{\alpha/2}\sigma) = 1 \alpha$ (pictured _____)
 - for θ in the middle: $P(\hat{\theta} z_{\alpha/2}\sigma < \theta < \hat{\theta} + z_{\alpha/2}\sigma) = 1 \alpha$ (draw)

That is, $\hat{\theta} \pm z_{\alpha/2}\sigma$ contains _____ for a proportion _____ of random samples (see picture, below). It's the $100\%(1-\alpha)$ confidence interval for θ .

The Case of a Difference of Two Means

Letting $\theta =$ _____ and $\hat{\theta} =$ _____, gives the confidence interval we need:

Let X_1, \dots, X_{n_X} and Y_1, \dots, Y_{n_Y} be independent large random samples from populations with means μ_X and μ_Y and standard deviations σ_X and σ_Y . A 100% $(1 - \alpha)$ confidence interval for $\mu_X - \mu_Y$ is (.

$$(\bar{X} - \bar{Y}) \pm z_{\alpha/2} \sqrt{\frac{\sigma_X^2}{n_X} + \frac{\sigma_Y^2}{n_Y}}$$

(We usually need to use $\sigma_X \approx __$ and $\sigma_Y \approx _$.)

e.g. A crayon maker is comparing the effects of two yellow dyes on crayon brittleness. Dye B is more expensive than dye A, but might produce a stronger crayon. 40 crayons are tested with each dye, and the impact strength (in joules) is measured for each. The A strength averaged 2.6, with standard deviation 1.4. The B strength averaged 3.8, with standard deviation 1.2. Find a 99% confidence interval for the difference, B - A, in population strengths.

5.5 Confidence Intervals for the Difference of Two Proportions

We compare two population proportions, p_X and p_Y , by studying their difference, $p_X - p_Y$. Notation:

	Population 1	Population 2	
Success probability	p_X	p_Y	
#Trials	n_X	n_Y	
#Successes	X	Y	
Sample proportion of successes	$\hat{p}_X = \frac{X}{n_X}$	$\hat{p}_Y = \frac{Y}{n_Y}$	
For informer about a second the statistic			

For inference about $p_X - p_Y$, use the statistic _____

To find a confidence interval for $p_X - p_Y$, we need the distribution of $\hat{p}_X - \hat{p}_Y$. Recall for independent X and Y:

• If
$$X \sim N(\mu_X, \sigma_X^2)$$
 and $Y \sim N(\mu_Y, \sigma_Y^2)$, then $X - Y \sim$ (§4.5)

• If $X \sim Bin(n, p)$, and np > 10 and n(1-p) > 10, then $X \sim N(_,_]$, _____) (\approx ; because CLT applies to $X = \sum_{i=1}^{n} B_i$, where $B_i \sim Bernoulli(p)$) (§4.11)

$$\implies \hat{p} = \frac{X}{n} \sim$$

It follows that, for $n_X p_X > 10$, $n_X (1 - p_X) > 10$, $n_Y p_Y > 10$, and $n_Y (1 - p_Y) > 10$,

$$\hat{p}_X - \hat{p}_Y \sim$$

We need the standard deviation for inference about the unknown $p_X - p_Y$, but we don't know ______ or _____. If the #successes and #failures are more than ______ in each sample, we can approximate them with ______ and _____.

Confidence Intervals on the Difference of Two Proportions

Recall, again, that many confidence intervals have the form

(point estimate) \pm (margin of error) =(point estimate) \pm (table value for confidence) \times [(estimated or true) standard deviation of point estimate] = $\hat{\theta} \pm$ (table value for confidence) $\times \sigma_{\hat{\theta}}$

The Old Confidence Interval

If the #successes and #failures are more than 10 in each sample, then the old $100\%(1-\alpha)$ confidence interval for $p_X - p_Y$ is

$$(\hat{p}_X - \hat{p}_Y) \pm z_{\alpha/2} \sqrt{\frac{\hat{p}_X(1 - \hat{p}_X)}{n_X} + \frac{\hat{p}_Y(1 - \hat{p}_Y)}{n_Y}}$$

For small samples, this interval $p_X - p_Y$ for a proportion $1 - \alpha$ of samples.

The New Plus-Four Confidence Interval

Recent research (2000) describes an improvement: add four fake observations, two successes and two failures, _______ to each sample. (The §5.2 plus-four interval for a single proportion added ______ successes and ______ failures to the single sample.)

Let independent $X \sim Bin(n_X, p_X)$ and $Y \sim Bin(n_Y, p_Y)$. Define

$$\tilde{n}_X =$$
_____, $\tilde{n}_Y =$ _____, $\tilde{p}_X =$ _____, and $\tilde{p}_Y =$ ______

Then the $(100\%)(1-\alpha)$ plus-four confidence interval for $p_X - p_Y$ is

$$(\tilde{p}_X - \tilde{p}_Y) \pm z_{\alpha/2} \sqrt{\frac{\tilde{p}_X(1 - \tilde{p}_X)}{\tilde{n}_X} + \frac{\tilde{p}_Y(1 - \tilde{p}_Y)}{\tilde{n}_Y}}$$

This interval can be used if $n_X > 4$ and $n_Y > 4$, without regard for the #successes and #failures. (Since $(p_X - p_Y) \in [___]$, trim the interval if it extends outside $[___]$.)

e.g. A randomized double-blind experiment assigned 244 smokers who wanted to quit to receive nicotine patches and another 245 to receive patches and an antidepressant. After a year, 40 in the first group and 87 in the second had quit. Give a 99% plus-four confidence interval for the difference (treatment - control) in proportions of smokers who quit.