Introduction to R

Keegan Korthauer

Department of Statistics

UW Madison

What is R?

- An free and open source language and environment for statistical computing and graphics
- Similar to the commercial language and environment 'S'
- Many common statistical functions are built-in but there are also thousands of user-written packages that can be downloaded
- Widely used in academia for research and teaching
- Also used in the commercial sector: Facebook, Google, National Weather Service, Orbitz, etc.

There's an R Package for that

https://www.youtube.com/watch?v=yhTerzNFLbo

Using R

- R is an interpreted language
 - typically used at the command line, where commands are executed one-by-one
 - similar to MATLAB
- We'll need to download/install two things to get started:
 - 1. R itself: http://cran.us.r-project.org/
 (choose 'base' for Windows, 'R-3.0.2.pkg' for Mac)
 - 2. RStudio: http://www.rstudio.com/ide/download/desktop
 (an alternative to running R from a command line; provides a nice, clean graphical user interface)
- Select the appropriate versions of both according to your operating system and follow the instructions for installation

RStudio Interface

RStudio Layout

- Console: where R is actually running; where you put commands
- Editor: collections of commands you plan to send to the console; can save them as text files (.txt) or R files (.R)
- Workspace: displays data that is currently loaded into memory; click on the 'History' tab for a list of commands you have entered
- Graphics, etc: displays any plots you have made; the other tabs allow you to open other files, install add-on packages, and read the help files

Simple R Commands

R as a calculator

```
+, -, *, /, ^ operate as you would expect
```

Various mathematical functions

```
log(): natural logarithm
exp(): exponential function
sqrt(): square root
abs(): absolute value
choose(n,k): # of ways to choose k items from n
```

Try it out

```
> # this is a comment
                                  > # create some variables
                                  > a = 10
>
> # try out R as a calculator
                                  > b = 18
> 8-5
                                  > x = c(a,b,9)
[1] 3
                                  >
> sqrt(144) + 3^2
                                  > # print the variables
[1] 21
                                  > a
> 5*89 - \log(306)
                                  [1] 10
[1] 439.2764
                                  > b
> choose(10,4)
                                  [1] 18
                                  > x
[1] 210
                                  [1] 10 18 9
```

Script with these commands posted on Learn@UW – with Lecture notes

Basic Functions

To find the mean and variance of 5 numbers, we could do this:

```
> (5+9+3+4+2)/5
[1] 4.6
> ((5^2+9^2+3^2+4^2+2^2) - 5*4.6^2)/4
[1] 7.3
```

With a very long vector it is more convenient to do this:

```
> x = c(5,9,3,4,2)
> mean(x)
[1] 4.6
> var(x)
[1] 7.3
Built-in functions
```

Help Files

- Help files contain information about built-in functions
 - input arguments & their defaults
 - output values
 - description of what it does
 - examples
 - who wrote it, etc...
- To see the help file for a function, use the help()
 command
- For example, try
 - > help(mean)
 - > help(sd)

Basic Graphics

- Built-in functions exist for many types of graphical summaries
- For a data vectors x and y
 - histogram: hist(x)
 - box plot: boxplot(x)
 - scatterplot: plot(x,y)
- All of these commands will use the default settings; to add a title, change axes labels, add colors, etc. refer to help files to change the optional input arguments
- To save a plot, click on 'Export' in the RStudio Graphics window pane

Try it out

```
> # Generate some plots
>
> # first let's get a vector
of data (random sample of 20
from standard normal)
> x <- rnorm(20)
> y < - rnorm(20)
>
> # plot a histogram, boxplot,
and scatterplot using all
defaults
> hist(x)
> boxplot(x)
> plot(x,y)
```

```
> # create a density
histogram (instead of
frequency) with 4 bars
(instead of default)
> hist(x, freq=FALSE,
breaks=4)
>
> # create a scatter plot
with blue points (instead
of black circles)
> plot(x,y, col="blue",
pch=20)
```

*Note that the output here is sent to the graphics console

The pnorm Function

 Evaluates the left-tail areas of the normal probability density function without the standard normal table:

```
pnorm(q, mean=0, sd=1, lower.tail=TRUE)
```

- Where q is the quantile (or z-score) you wish to integrate up to
- Leave all other arguments default if using standard normal, or else specify the mean and standard deviation
- To get the right-tail instead, input lower.tail=FALSE

The pbinom Function

 Evaluates the left-tail areas of the binomial probability mass function:

```
pbinom(q, size, prob, lower.tail=TRUE)
```

- Where q is the quantile you wish to sum up to, size is the parameter n and prob is the parameter p
- Gives probability less than or equal to (so the interval is inclusive of q)
- To get the right-tail instead, input lower.tail=FALSE

The ppois Function

 Evaluates the left-tail areas of the binomial probability mass function:

```
ppois(q, lambda, lower.tail=TRUE)
```

- Where q is the quantile you wish to sum up to and lambda is the rate parameter λ
- Gives probability less than or equal to (so the interval is inclusive of q)
- To get the right-tail instead, input lower.tail=FALSE

The qnorm Function

 Like the 'reverse table lookup' – gives the quantile of the normal distribution for a given left-tail area

```
qnorm(p, mean=0, sd=1, lower.tail=TRUE)
```

- Where p is area to the left of the quantile you wish to solve for
- Leave all other arguments default if using standard normal, or else specify the mean and standard deviation
- When p corresponds to the right-tail instead, input lower.tail=FALSE

Try it out - pnorm & qnorm

```
# pnorm - CDF of Normal Distribution
# find area to the left of zero for standard normal
pnorm(0)
# find area to the right of 3 for mean 2, sd 2
pnorm(3, mean=2, sd=2, lower.tail=FALSE)
# or
1 - pnorm(3, mean=2, sd=2)
# qnorm — Inverse CDF of Normal Distribution
# find the quantile of the standard normal where the left-tail
# area is 0.025
qnorm(0.025)
```

^{*}Note that the output of the commands is not shown here — this is just the script

Try it out - pbinom

```
# pbinom - CDF of Binomial Distribution
# find P(X>8) for X\sim Bin(50,0.15)
1-pbinom(8, size=50, prob=0.15)
# or
pbinom(8, size=50, prob=0.15, lower.tail=FALSE)
# if we wanted P(X>=8) (so 8 is included in the interval) for
\# X\sim Bin(50,0.15)
1-pbinom(7, size=50, prob=0.15)
# find P(X=3) for X \sim Bin(10,0.5)
pbinom(3, size=10, prob=0.5) - pbinom(2, size=10, prob=0.5)
# without using pbinom
choose(10,3)*(0.5)^5*(0.5)^5
```

^{*}Note that the output of the commands is not shown here — this is just the script

Try it out - ppois

```
# ppois - CDF of Poisson Distribution
# find P(X>4) for X~Poisson(2)
1-ppois(4, lambda=2)
# or
ppois(4, lambda=2, lower.tail=FALSE)
# find P(X=6) for X ~ Poisson(4)
exp(-4)*4^(6)/factorial(6)
# without using ppois
ppois(6,lambda=4)-ppois(5,lambda=4))
```

^{*}Note that the output of the commands is not shown here – this is just the script

Resources

- On the web
 - A (Very Short) Introduction to R by by Paul Torfs & Claudia Brauer
 - An Introduction to R by W. N. Venables, D. M. Smith and the R Core Team
 - Google/RWeb
- Through the UW Library System
 - R for Dummies by Andrie de Vries, Joris Meys (ebook)
 - Data Analysis and Graphics Using R by John Maindonald, W. John Braun (e-book)

Next

Review for Exam 1