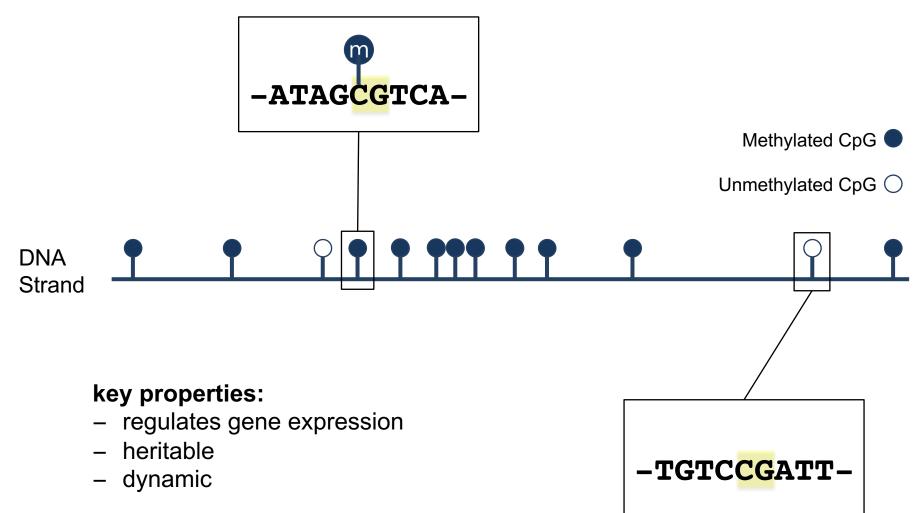
De novo detection and accurate inference of differentially methylated regions

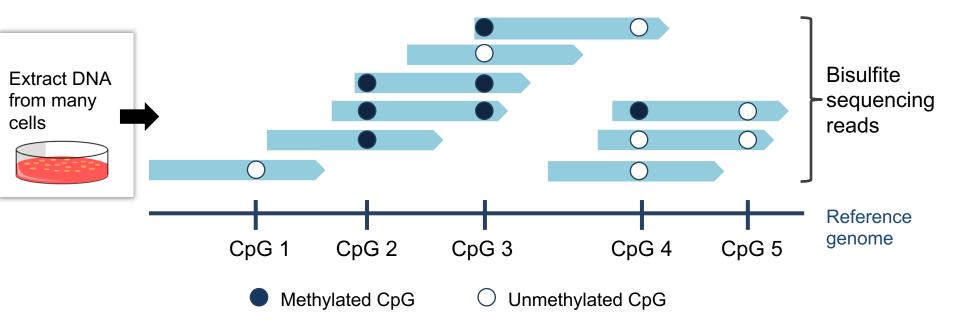
Keegan Korthauer, PhD

AISC, Greensboro, NC 6 October 2018

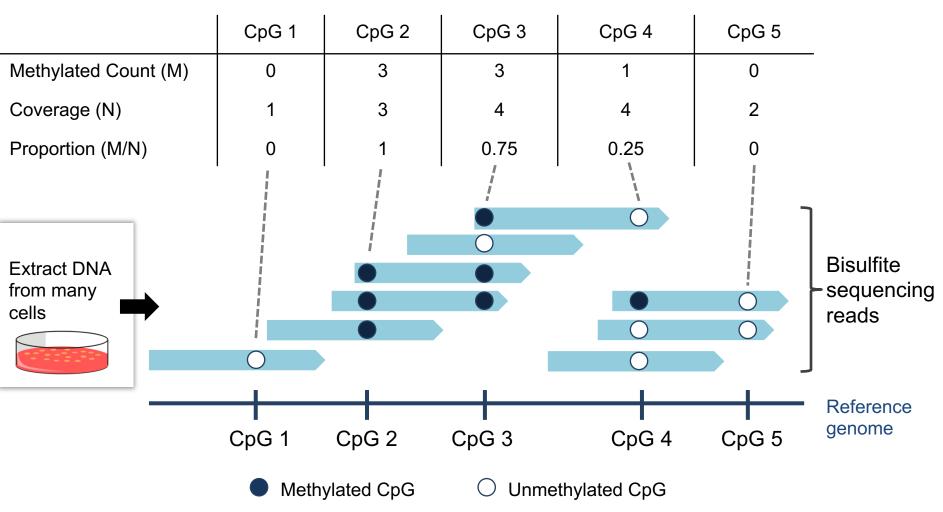
DNA Methylation: The fifth base?



Whole Genome Bisulfite Sequencing (WGBS)

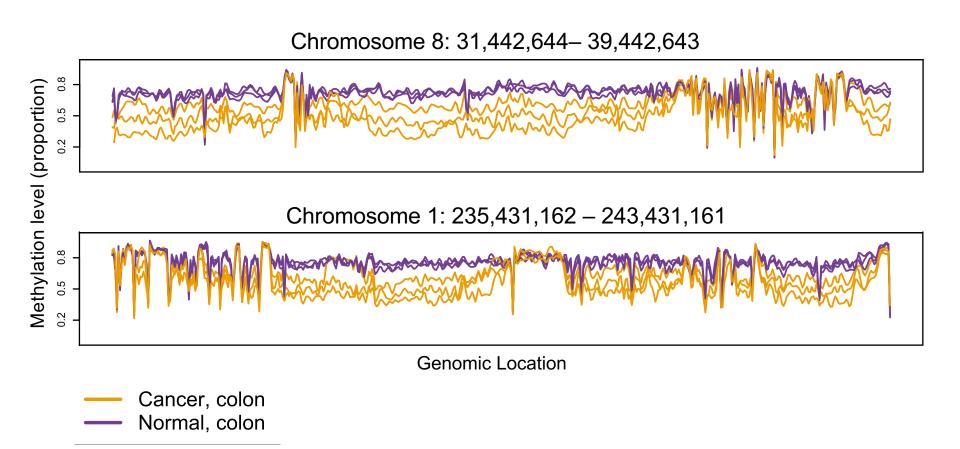


Whole Genome Bisulfite Sequencing (WGBS)

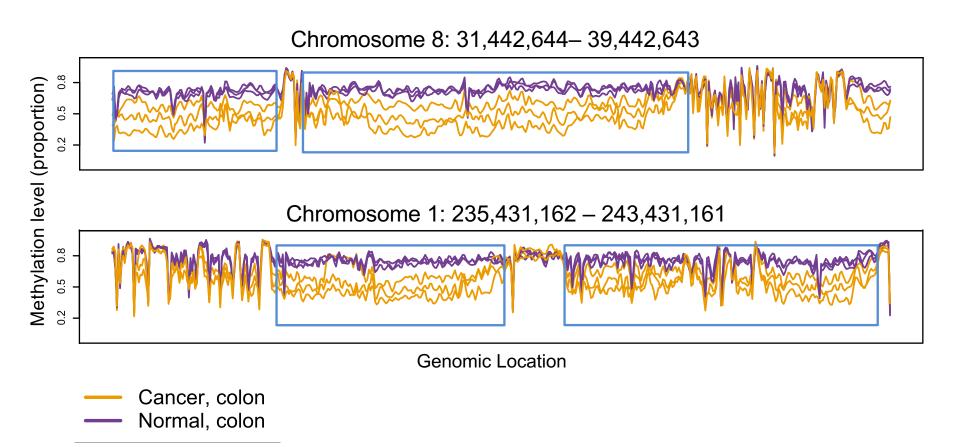


Methylation Sequencing Data

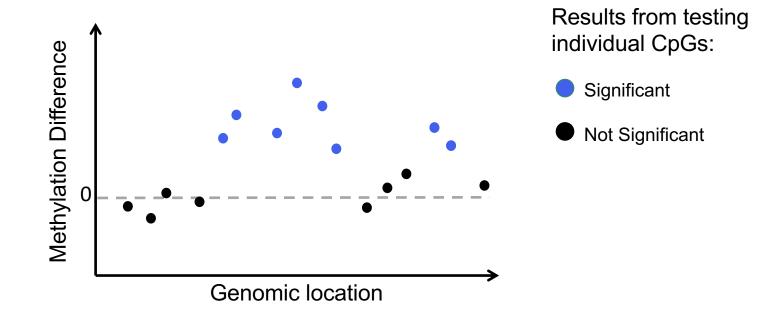
Differentially Methylated Regions (DMRs)



Differentially Methylated Regions (DMRs)



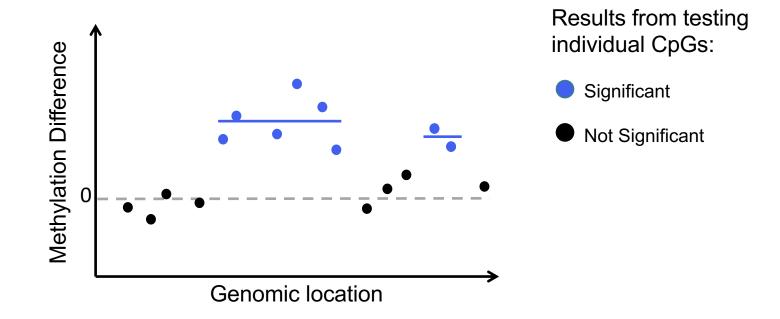
Previous methods: Grouping significant CpGs



Examples:

- Bsmooth (Hansen et al., 2012)
- DSS (Feng et al., 2014; Wu et al., 2015)

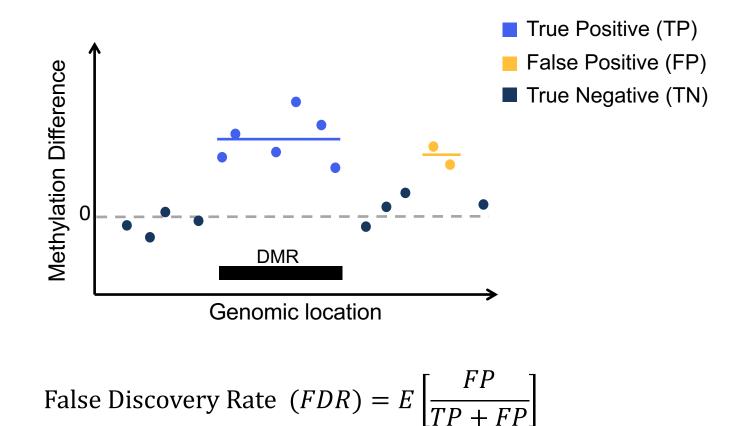
Previous methods: Grouping significant CpGs



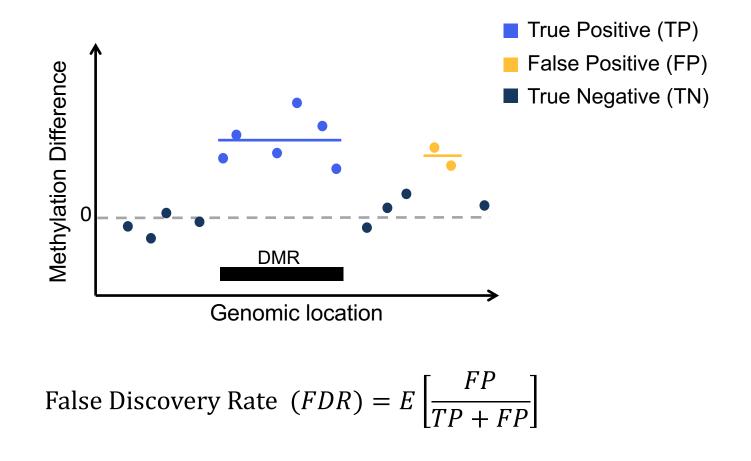
Examples:

- Bsmooth (Hansen et al., 2012)
- DSS (Feng et al., 2014; Wu et al., 2015)

Error rate not controlled at the region level

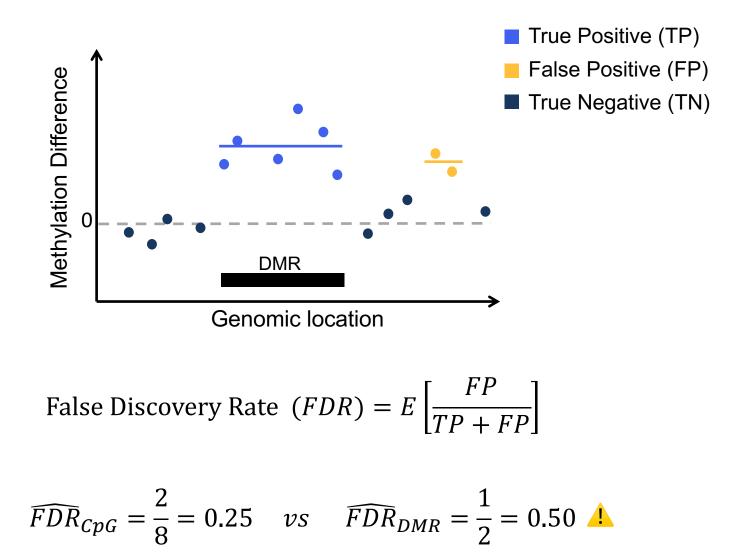


Error rate not controlled at the region level



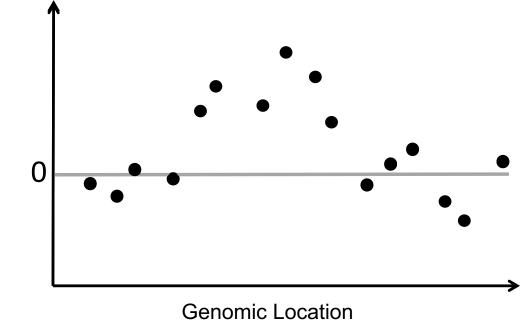
$$\widehat{FDR}_{CpG} = \frac{2}{8} = 0.25$$

Error rate not controlled at the region level



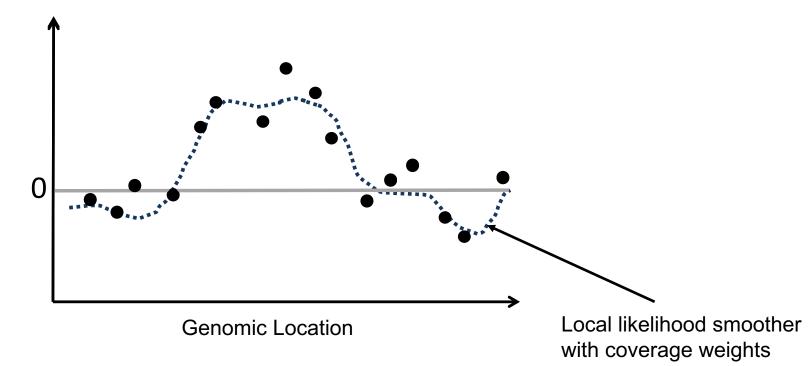
dmrseq: (1) Detect de novo candidate regions

Genome-wide scan of CpG methylation difference



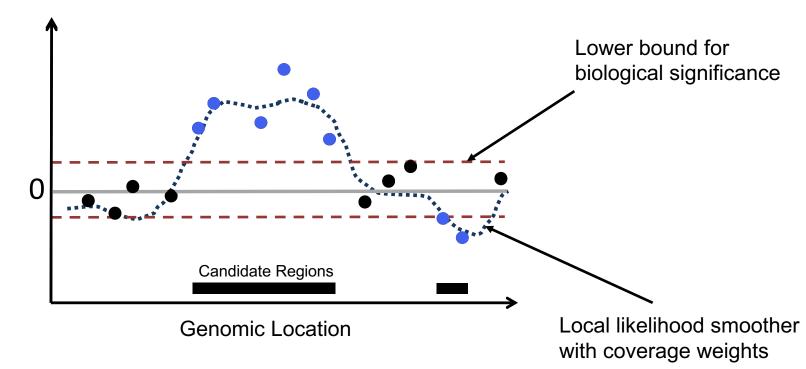
dmrseq: (1) Detect de novo candidate regions

Genome-wide scan of CpG methylation difference



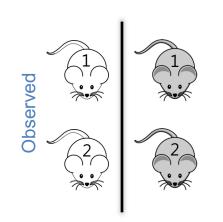
dmrseq: (1) Detect de novo candidate regions

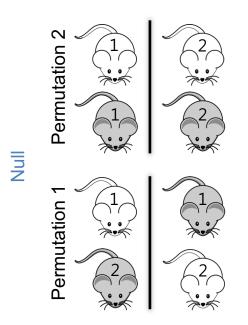
Genome-wide scan of CpG methylation difference



dmrseq: (2) Assess region-level signal

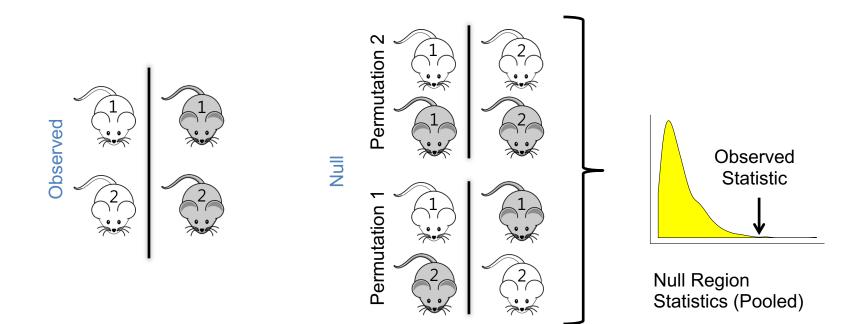
- Formulate region-level summary statistic
- Compare region statistics against null permutation distribution to evaluate significance





dmrseq: (2) Assess region-level signal

- Formulate region-level summary statistic
- Compare region statistics against null permutation distribution to evaluate significance



CpG level: $M_{ijr} | N_{ijr}, p_{ijr} \sim Bin(N_{ijr}, p_{ijr})$
 $p_{ijr} \sim Beta(a_{irs}, b_{irs})$
 $\pi_{irs} = \frac{a_{irs}}{(a_{irs}+b_{irs})}$ M_{ijr} = methylated read count
 N_{ijr} = total coverage
 p_{ijr} = methylation proportion
 π_{irs} = methylation proportion for condition si indexes CpGs
j indexes samples, where $j \in C_s$
s indicates biological condition

CpG level:

$$\begin{split} M_{ijr} | N_{ijr}, p_{ijr} &\sim Bin(N_{ijr}, p_{ijr}) \\ p_{ijr} &\sim Beta(a_{irs}, b_{irs}) \\ \pi_{irs} &= \frac{a_{irs}}{(a_{irs} + b_{irs})} \end{split}$$

 M_{ijr} = methylated read count N_{ijr} = total coverage

 p_{ijr} = methylation proportion

- *i* indexes CpGs *j* indexes samples, where $j \in C_s$
- s indicates biological condition

 π_{irs} = methylation proportion for condition s

Region level: $g(\boldsymbol{\pi}_r) = \boldsymbol{X}\boldsymbol{\beta}_r$ $= \sum_{l=1}^{L_r} \beta_{0lr} \mathbf{1}_{[i=l]} + X_j \beta_{1r}$

CpG level:

$$\begin{split} M_{ijr} | N_{ijr}, p_{ijr} &\sim Bin(N_{ijr}, p_{ijr}) \\ p_{ijr} &\sim Beta(a_{irs}, b_{irs}) \\ \pi_{irs} &= \frac{a_{irs}}{(a_{irs} + b_{irs})} \end{split}$$

 M_{ijr} = methylated read count N_{ijr} = total coverage *i* indexes CpGs *j* indexes samples, where $j \in C_s$ *s* indicates biological condition

- p_{ijr} = methylation proportion
- π_{irs} = methylation proportion for condition *s*

Region level: $g(\pi_r) = X \beta_r$ $= \sum_{l=1}^{L_r} \beta_{0lr} \mathbf{1}_{[i=l]} + X_j \beta_{1r}$ Incomparing the probability of the probabi

CpG level:

$$\begin{split} M_{ijr} | N_{ijr}, p_{ijr} &\sim Bin(N_{ijr}, p_{ijr}) \\ p_{ijr} &\sim Beta(a_{irs}, b_{irs}) \\ \pi_{irs} &= \frac{a_{irs}}{(a_{irs} + b_{irs})} \end{split}$$

 M_{ijr} = methylated read count N_{ijr} = total coverage

 p_{ijr} = methylation proportion

 π_{irs} = methylation proportion for condition s

i indexes CpGs *j* indexes samples, where $j \in C_s$ *s* indicates biological condition

Region level:

$$g(\boldsymbol{\pi}_{r}) = \boldsymbol{X}\boldsymbol{\beta}_{r}$$

$$= \sum_{l=1}^{L_{r}} \beta_{0lr} \mathbf{1}_{[i=l]} + X_{j}\beta_{1r}$$

$$\text{loci-specific intercept}}$$
order of the condition effect
$$H_{0}: \beta_{1r} = 0$$

Region-level model fitting

Generalized Least Squares (GLS) with variance stabilizing transformation:

arcsine link transformation (Park & Wu 2016) $Z_{ijr} = \arcsin(2 M_{ijr}/N_{ijr} - 1)$

Region-level model fitting

Generalized Least Squares (GLS) with variance stabilizing transformation:

arcsine link transformation (Park & Wu 2016) $Z_{ijr} = \arcsin(2 M_{ijr}/N_{ijr} - 1)$

Region-level model fitting

Generalized Least Squares (GLS) with variance stabilizing transformation:

arcsine link transformation (Park & Wu 2016) $Z_{ijr} = \arcsin(2 M_{ijr}/N_{ijr} - 1)$

$$Var(M_{ijr}/N_{ijr}) \propto \pi_{ijr}(1 - \pi_{ijr})$$
 but $Var(Z_{ijr}) \approx \frac{1 + (N_{ijr} - 1)\gamma_{irs}}{N_{ijr}}$
Variance depends on mean Variance independent of mean

$$Z_r = X\beta_r + \epsilon_r$$

where $E[\epsilon_r] = 0$ and $Var[\epsilon_r] = V_r$
 $\hat{\beta}_r = (X^t V_r^{-1} X)^{-1} V_r^{-1} X^t V_r^{-1} Z_r$

Account for variability across samples and locations

(1) Correlation: Continuous Autoregressive (CAR) model

$$\rho(Z_{ijr}, Z_{kjr}) = e^{-\phi_r |t_{ir} - t_{kr}|}$$

$$t_{ir} = \text{genomic location of CpG } i$$

Account for variability across samples and locations

(1) Correlation: Continuous Autoregressive (CAR) model

$$\rho(Z_{ijr}, Z_{kjr}) = e^{-\phi_r |t_{ir} - t_{kr}|}$$

$$t_{ir} = \text{genomic location of CpG } i$$

(2) Variability dependent on coverage

$$Var(Z_{ijr}) \propto \frac{1}{N_{i\cdot r}}$$

Account for variability across samples and locations

(1) Correlation: Continuous Autoregressive (CAR) model

$$\rho(Z_{ijr}, Z_{kjr}) = e^{-\phi_r |t_{ir} - t_{kr}|}$$

$$t_{ir} = \text{genomic location of CpG } i$$

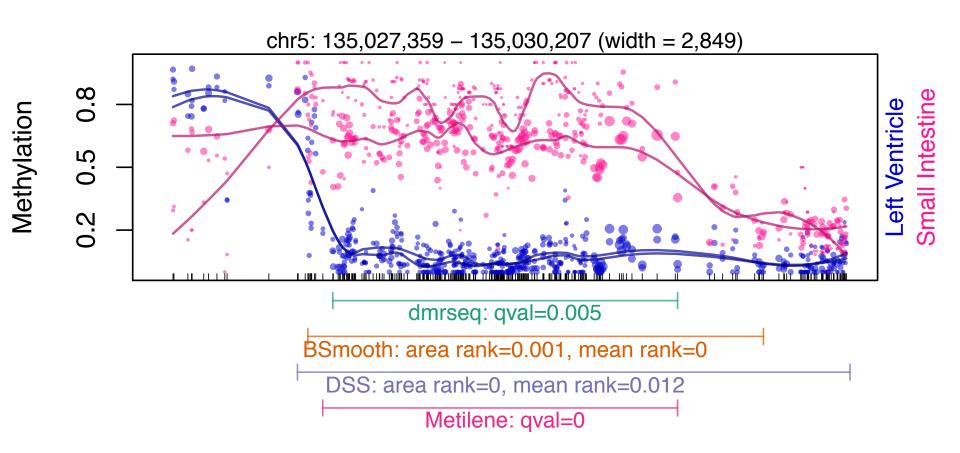
(2) Variability dependent on coverage $Var(Z_{ijr}) \propto \frac{1}{N_{i\cdot r}}$

(3) Within sample correlation

Independent samples

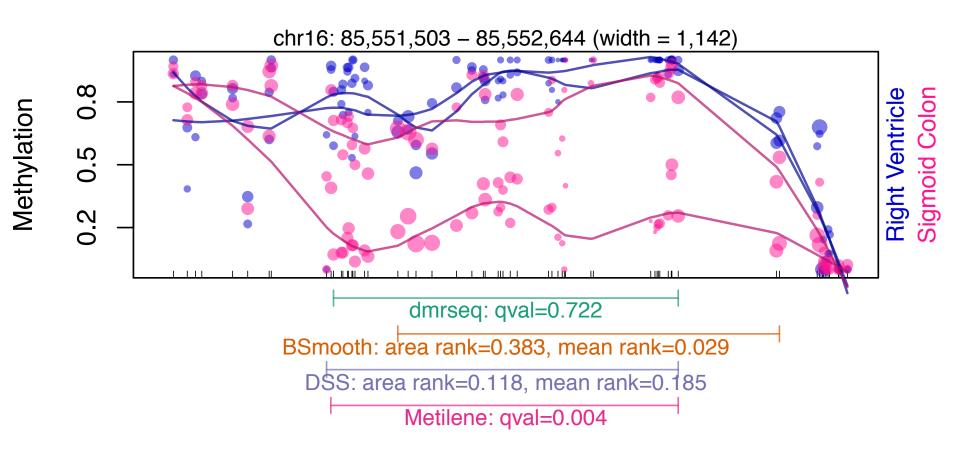
 $Cov(Z_{ijr}, Z_{ij^*r}) = 0$

Example: highly ranked DMR across all methods



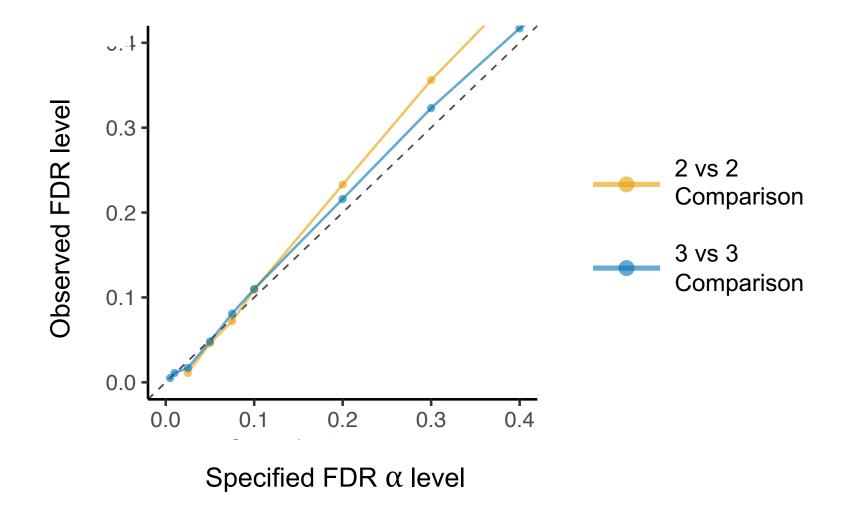
Korthauer et al., 2018 (*Biostatistics*)

Example: dmrseq accounts for sample variability

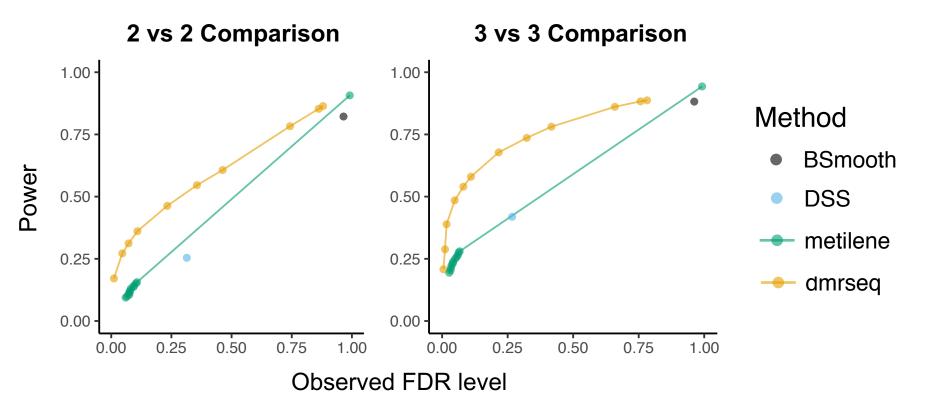


Korthauer et al., 2018 (*Biostatistics*)

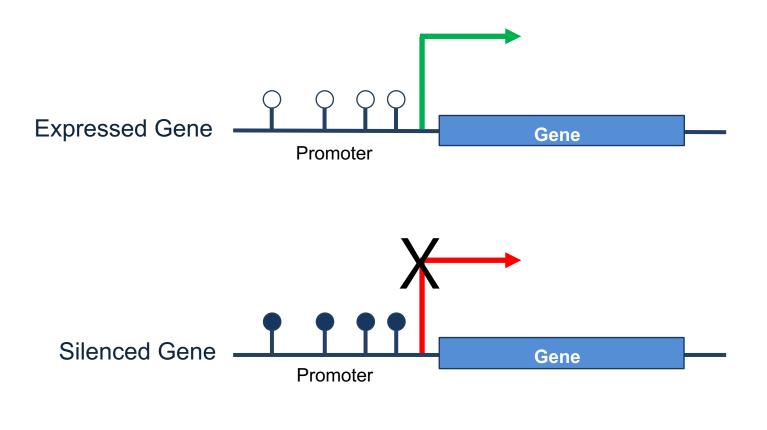
Accurate FDR control in simulation



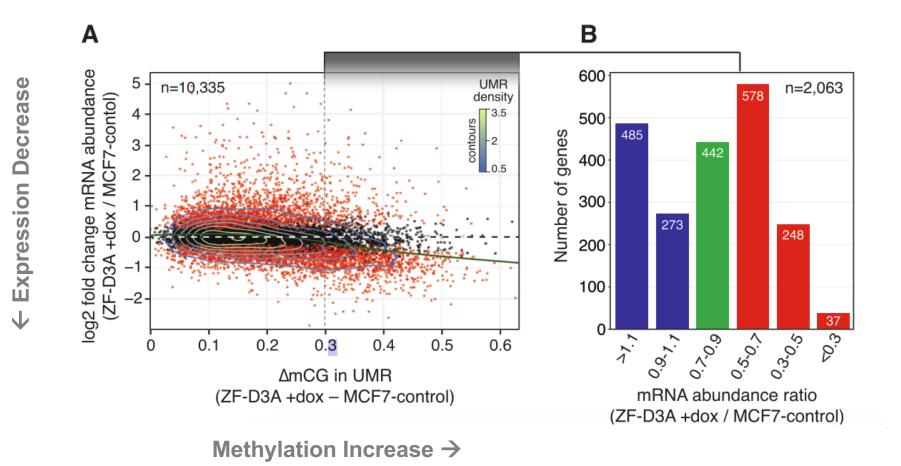
High sensitivity and specificity in simulation

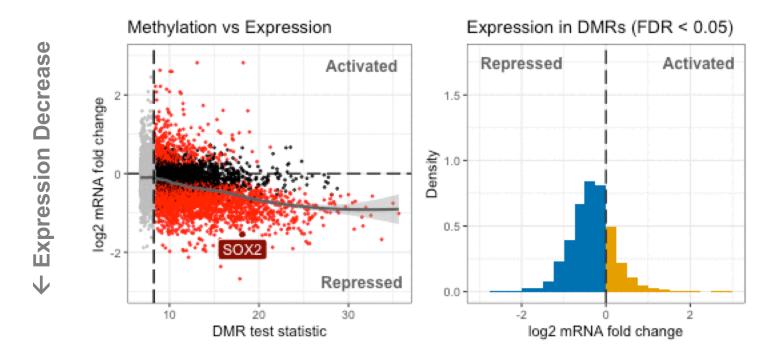


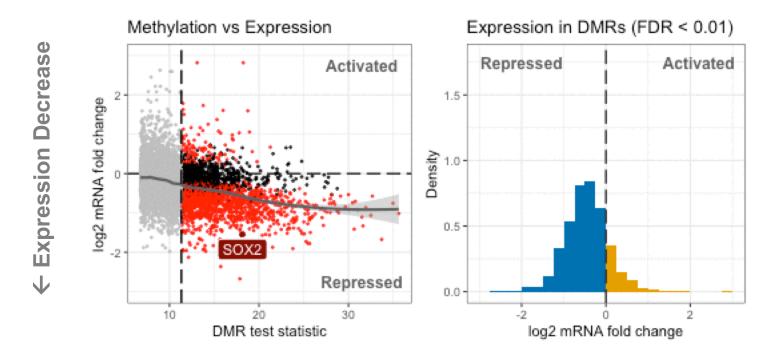
Methylation is a transcriptional silencing mark

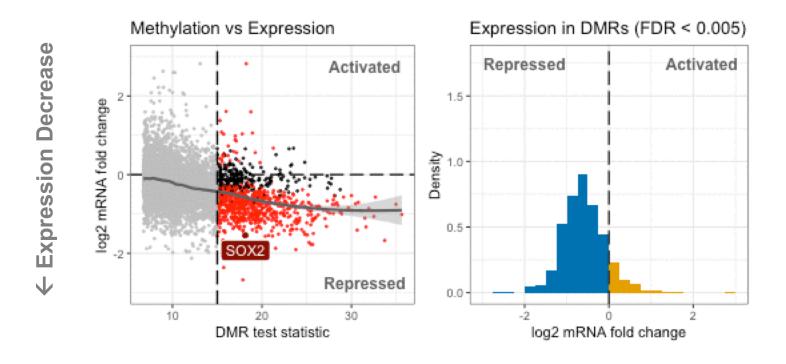


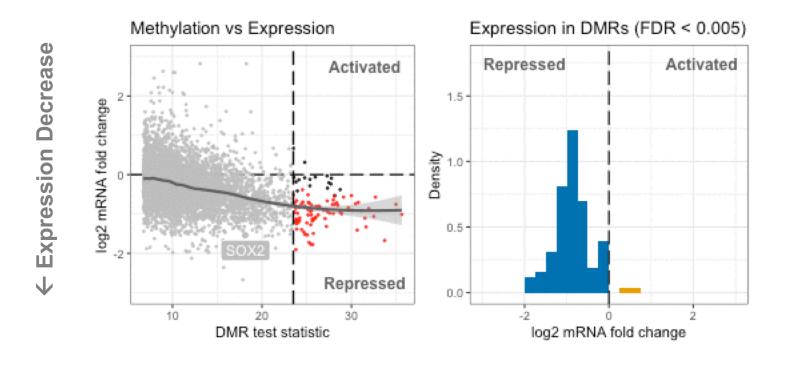
Landmark study finds little influence of methylation on expression





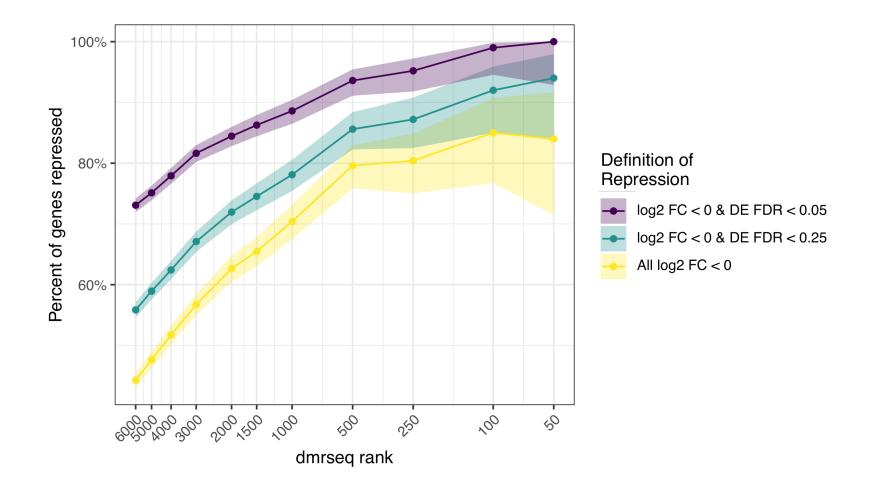






Korthauer & Irizarry, 2018 (bioRxiv)

Enrichment increases with significance level



Summary

- dmrseq identifies and prioritizes DMRs from bisulfite sequencing experiments
 - **Models signal at the region level** in order to account for sample and spatial variability
 - Achieves accurate False Discovery Rate control by generating a null distribution that pools information across the genome
 - Reveals the expected link between DNA methylation and gene expression in the reanalysis of a landmark study
- Learn more:
 - Methodology detailed in Korthauer et al., 2018 (Biostatistics)
 - Reanalysis of Ford study detailed in Korthauer & Irizarry, 2018 (bioRxiv)
 - R package dmrseq available on Bioconductor

Acknowledgements

Dana-Farber/Harvard Chan Rafael Irizarry Claire Duvallet Stephanie Hicks Patrick Kimes Yered Pita-Juarez Alejandro Reyes Chinmay Shukla Mingxiang Teng

<u>Collaborators</u> Sutirtha Chakraborty Yuval Benjamini



Contact

keegan@jimmy.harvard.edu

keegankorthauer

kkorthauer.org