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Differential Expression Analysis in bulk is blind to 
cellular heterogeneity 
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Cellular heterogeneity can lead to multi-modal 
expression distributions 
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Expression States of Gene X for Individual Cells Over Time 
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Possible mechanisms 
-  Multiple stable 

underlying cell states 
-  Stochastic‘burst’ 

fluctuations 
-  Oscillatory patterns 



Need to reassess evaluation of DE methods in 
single-cell 

Fig 2C, Kharchenko et al. 2014, Nature Methods  

SCDE 

Fig 2A, Sengupta et al. 2016, BioRxiv 
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Fig 5A, Delmans et al. 2015, BioRxiv 3 



 
Preprocessing 

 1.  Obtain log transformed counts normalized for library size 
 2.  Filter genes that are detected in fewer than 25% of cells 
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1.  Model expressed cells for each gene: DPM of Normals 
2.  Quantify evidence of Differential Distributions (DD): 

-  BF with permutation for expressed component 
-  GLM  LRT for dropout component 
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The posterior parameters (mk, sk, ak, bk) also have closed form due to the conjugacy

of the model given by Equation 1. These parameters are given by

sk = s0 + n

(k)

mk =
s0m0 +

P
y

(k)

sk

ak = a0 + n

(k)

bk = b0 +
X

(y(k))2 + s0m
2
0 � skm

2
k

(5)

where n

(k) is the number of observations in component k. It follows that the

marginal posterior distribution of µk conditional on the partition is

µk|Y, Z ⇠ tak

⇣
mk,

bk

aksk

⌘
(6)

where ta(b, c) denotes the generalized Student’s t-distribution with a degrees of

freedom, noncentrality parameter b and scale parameter c. The product partition

Dirichlet process mixture model can be simplified as follows

yj |zj = k, µk, ⌧k ⇠ N(µk, ⌧k)

µk, ⌧k ⇠ NG(m0, s0, a0/2, 2/b0)

z ⇠ ↵

K�(↵)

�(↵+ J)

KY

k=1

�(n(k))

(7)

Then we can obtain the joint predictive distribution of the data Y and partition

Z by incorporating Equation 7:

f(Y, Z) = f(Z)
KY

k=1

f(y(k))

/ ↵

K
KY

k=1

�(n(k))�(ak/2)

(bk/2)ak/2
s

�1/2
k

(8)

Model-fitting

The fitting of the model given in Equation 7 involves obtaining an estimate Ẑ of

the partition. The goal is to find the partition that yields highest posterior mass

in Equation 8, referred to as the maximum a posteriori (MAP) partition estimate.

Under this modeling framework, the solution for the MAP estimate is not deter-

ministic and several computational procedures have been developed utilizing Polya
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ponent separation between any pair of components is assessed with the Bimodality

Index (BI) [67]:

BI = 2 ⇤
r

n1n2

(n1 + n2)2

✓
|µ1 � µ2|

�

◆

where the component means µ1 and µ2 are estimated via maximum likelihood, the

common within-component standard deviation � is conservatively estimated with

the maximum within-component standard deviation among all component, and n1

and n2 are the number of cells belonging to each component. BI thresholds for

the split and merge step were determined empirically and vary by sample size, as

multiple modes are more easily detected as sample size increases [67] (for more

details see Supplement Section 4).

The second filtering criteria is designed to reduce the impact of outlier cells.

Specifically, components with fewer than 3 cells are not considered, and the merge

step is also carried out if one of the components present has an extremely small

variance (more than 20 times larger than any other component). Likewise, the split

step is not carried out if one of the proposed components has a variance more than

10 times larger than any other component.

Simulation details

component means and variances

Each gene was simulated based on the characteristics of a randomly sampled uni-

modal gene with at least 25% nonzero measurements in the H1 dataset. For uni-

modal genes, the mean and variance were chosen to match the observed mean and

variance; for bimodal genes, the component means and variances were selected to be

near the observed mean and variance. The proportion of zeroes is chosen to match

that observed in the randomly sampled gene, and is not varied by condition. Details

are provided in the following sections.

Distances between (log-scale) component means �µ� in the multi-modal genes

were chosen such that components were separated by a minimum of 2 and maximum

of 6 standard deviations, where the standard deviation � is assumed constant (on

the log-scale) across components. The specific values of � used for the simulated

genes are empirical estimates of the standard deviations of the unimodal case study

Conditional on partition, likelihood is 
a product over component-specific 
distributions: 

Partition estimate by BIC with 
additional merge/split step based on  
Bimodal Index: 
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these are modeled as a separate distributional component (see section ‘Di↵erential

proportion of zeroes’ for more details).

Ultimately, we would like to calculate a Bayes Factor for the evidence that the

data arises from two independent condition-specific models (di↵erential distribu-

tions (DD)) versus one overall model that ignores condition (equivalent distribu-

tions (ED)). Let MDD denote the di↵erential distributions hypothesis, and MED

denote the equivalent distributions hypothesis. A Bayes Factor in this context for

gene g would be:

BFg =
f(Yg|MDD)

f(Yg|MED)

where f(Yg|M) denotes the predictive distribution of the observations from gene

g under the given hypothesis. In general, there is no analytical solution for this

distribution under the Dirichlet process mixture model framework. However, under

the Product Partition Model (PPM) formulation (see Methods section for more

details), we can get a closed form solution for f(Yg, Zg|M), where Zg represents

a partition (or clustering) of samples to mixture components. As the partition Zg

cannot be integrated out, we introduce an approximate Bayes Factor score:

Scoreg = log

✓
f(Yg, Zg|MDD)

f(Yg, Zg|MED)

◆
= log

✓
fC1(Y C1

g , Z

C1
g )fC1(Y C2

g , Z

C2
g )

fC1,C2(Yg, Zg)

◆

where C1 and C2 denote condition 1 and 2, respectively, and the score is evaluated

at the partition estimate Ẑg. A high value of this score presents evidence that a

given gene is di↵erentially distributed. Significance of the score is assessed via a

permutation test. Specifically, condition labels are permuted and partition estimates

are obtained within the new ‘conditions’. For each permuted data set, the Bayes

Factor score is calculated; the default in scDD is 1,000 permutations. For each gene,

an empirical p-value is calculated, and FDR is controlled for a given target value

using the method of [34].

If covariates are available, instead of permuting the observed values, the rela-

tionship between the clustering and covariates can be preserved by permuting the

residuals of a linear model that includes the covariate and using the fitted values

[35]. As pointed out by [18], the cellular detection rate is a potential confounder vari-

able, so the permutation procedure in the case studies is adjusted in this manner. If

other known confounders exist and are measured, these can also be incorporated in

Korthauer et al. Page 6 of 31

these are modeled as a separate distributional component (see section ‘Di↵erential

proportion of zeroes’ for more details).

Ultimately, we would like to calculate a Bayes Factor for the evidence that the

data arises from two independent condition-specific models (di↵erential distribu-

tions (DD)) versus one overall model that ignores condition (equivalent distribu-

tions (ED)). Let MDD denote the di↵erential distributions hypothesis, and MED

denote the equivalent distributions hypothesis. A Bayes Factor in this context for

gene g would be:

BFg =
f(Yg|MDD)

f(Yg|MED)

where f(Yg|M) denotes the predictive distribution of the observations from gene

g under the given hypothesis. In general, there is no analytical solution for this

distribution under the Dirichlet process mixture model framework. However, under

the Product Partition Model (PPM) formulation (see Methods section for more

details), we can get a closed form solution for f(Yg, Zg|M), where Zg represents

a partition (or clustering) of samples to mixture components. As the partition Zg

cannot be integrated out, we introduce an approximate Bayes Factor score:

Scoreg = log

✓
f(Yg, Zg|MDD)

f(Yg, Zg|MED)

◆
= log

✓
fC1(Y C1

g , Z

C1
g )fC1(Y C2

g , Z

C2
g )

fC1,C2(Yg, Zg)

◆

where C1 and C2 denote condition 1 and 2, respectively, and the score is evaluated
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Approximate Bayes Factor score for 
DD of expressed cells between 
conditions: 

Assess significance via permutation 
of samples to conditions to obtain 
gene-specific empirical p-values 
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If expressed component does not 
display significant DD, assess 
evidence for differential proportion of 
zeroes (dropout): 
 
Logistic regression adjusted for 
overall cellular rate of dropout 
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be modeled by a conjugate Dirichlet process mixture (DPM) of normals given by

y

c
j ⇠ N(µj , ⌧j)

µj , ⌧j ⇠ G

G ⇠ DP (↵, G0)

G0 = NG(m0, s0, a0/2, 2/b0)

(1)

whereDP is the Dirichlet process with base distributionG0 and precision parameter

↵, N(µj , ⌧j) is the normal distribution parameterized with mean µj and precision

⌧j (i.e. with variance ⌧

�2
j ), and NG(m0, s0, a0/2, 2/b0) is the normal-gamma dis-

tribution with mean m0, precision s0⌧j , shape a0/2, and scale 2/b0. Let K denote

the number of components (unique values among (µ, ⌧) = {µj , ⌧j}Jj=1). Note that

two observations indexed by j and j

0 belong to the same component if and only if

(µj , ⌧j)=(µj0 , ⌧j0).

Product Partition Models

The posterior distribution of (µ, ⌧) is intractable even for moderate sample sizes.

This is because the number of possible partitions (clusterings) of the data grows

extremely rapidly as the sample size increases (according to the Bell number). How-

ever, if we let Z = (z1, ..., zJ) be the vector of component memberships of gene g

for all samples, where the number of unique Z values is K, the probability density

of Y conditional on Z can be viewed as a product partition model [57, 58]. Thus it

can be written as a product over all component-specific densities:

f(Y |Z) =
KY

k=1

f(y(k)) (2)

where y

(k) is the vector of observations belonging to component k and f(y(k)) is

the component-specific distribution after integrating over all other parameters. In

the conjugate normal-gamma setting, this has a closed form given by

f(y(k)) / �(ak/2)

(bk/2)ak/2
s

�1/2
k (3)

The posterior for the parameters (µk, ⌧k) conditional on the partition is

(µk, ⌧k)|Y, Z ⇠ NG(mk, sk, ak/2, 2/bk) (4)

Classification algorithm considers 
number of components in each 
condition as well as their overlap 
 
    e.g. if there is one component in 
both conditions, and they do not 
overlap => DE 

Overlap is assessed via posterior 
sampling of component-specific 
parameters: 

Traditional DE

µ1 µ2

(A) DP

µ1 µ2

(B)

DM

µ1 µ2

(C) DB

µ1 µ3 µ2

(D)

DE: Traditional Differential 
Expression DP: Differential Proportion DM: Differential Modality 

DB: Both DM and Differential 
Component means 

DZ: Differential Proportion 
of zeroes 



-  500 DD genes from each 
category, 8000 null genes 

-  Observations generated 
from mixtures of negative 
binomial distributions 

scDD detects and classifies complex patterns 
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Table 2 Power to detect DD genes in simulated data

True Gene Category

Sample Size Method DE DP DM DB Overall (FDR)

scDD 0.893 0.418 0.898 0.572 0.695 (0.029)

50 SCDE 0.872 0.026 0.817 0.260 0.494 (0.004)

MAST 0.908 0.400 0.871 0.019 0.550 (0.026)

scDD 0.951 0.590 0.960 0.668 0.792 (0.031)

75 SCDE 0.948 0.070 0.903 0.387 0.577 (0.003)

MAST 0.956 0.633 0.943 0.036 0.642 (0.022)

scDD 0.972 0.717 0.982 0.727 0.850 (0.033)

100 SCDE 0.975 0.125 0.946 0.478 0.631 (0.003)

MAST 0.977 0.752 0.970 0.045 0.686 (0.022)

scDD 1.000 0.983 1.000 0.905 0.972 (0.035)

500 SCDE 1.000 0.855 0.998 0.787 0.910 (0.004)

MAST 1.000 0.993 1.000 0.170 0.791 (0.022)
Average power to detect simulated DD genes by true category. Averages are calculated over 20

replications. Standard errors were < 0.025 (not shown).

Table 3 Correct Classification Rate in simulated data

Gene Category

Sample Size DE DP DM DB

50 0.719 0.801 0.557 0.665

75 0.760 0.732 0.576 0.698

100 0.782 0.678 0.599 0.706

500 0.816 0.550 0.583 0.646
Average Correct Classification Rate for detected DD genes. Averages are calculated over 20

replications. Standard errors were < 0.025 (not shown).

Table 4 Average correct classification rates by component mean distance

Sample Gene component mean distance �µ

Size Category 2 3 4 5 6

DP 0.02 0.20 0.78 0.94 0.98

50 DM 0.10 0.23 0.59 0.81 0.89

DB 0.08 0.22 0.59 0.80 0.80

DP 0.02 0.18 0.77 0.94 0.97

75 DM 0.08 0.27 0.69 0.86 0.90

DB 0.09 0.29 0.71 0.83 0.84

DP 0.03 0.16 0.74 0.93 0.95

100 DM 0.10 0.32 0.76 0.87 0.91

DB 0.08 0.32 0.80 0.85 0.84

DP 0.01 0.15 0.72 0.91 0.93

500 DM 0.12 0.33 0.72 0.85 0.89

DB 0.03 0.43 0.85 0.85 0.85
Average Correct Classification Rates stratified by �µ. Averages are calculated over 20 replications.

Standard errors were < 0.025 (not shown).
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Simulation 

Ability to correctly classify 
DD genes depends on the 
ability to detect the correct 
number of components  
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Additional Files

Additional file 1 — Supplement

Sensitivity analyses of MAP estimation method, further methodological details, and additional results.

Figures

Tables

Table 1 Rate of detection of correct number of components in simulated data

Bimodal Unimodal

Sample component mean distance �µ

Size 2 3 4 5 6

50 0.056 0.196 0.579 0.848 0.922 0.907

75 0.052 0.252 0.719 0.917 0.957 0.908

100 0.050 0.302 0.811 0.950 0.974 0.905

500 0.073 0.417 0.959 0.995 0.991 0.884
Average proportion of simulated bimodal and unimodal genes where the correct number of

components was identified, averaged over gene category and condition. Averages are calculated over

20 replications. Standard errors were < 0.025 (not shown).

Power to detect correct number of components 
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Ability to correctly classify 
DD genes depends on the 
ability to detect the correct 
number of components  
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scDD detects and classifies complex patterns 
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471 DD genes not detected by 
SCDE or MAST are enriched for 
complex patterns (1 gene 
categorized as DE) 
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Snapshot of Population 
of Single Cells 

Histogram of Observed 
Expression Level of Gene X 

Number 
of Cells 

(A) 

(B) (C) 

Expression States of Gene X for Individual Cells Over Time 

Low Expression State:     µ1        High Expression State:     µ2 

µ1 µ2 

Time 

Cell 1 
 

Cell 2 
 

Cell 3 
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! 
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Figure 1 Schematic of the presence of two cell states within a cell population which can lead to

bimodal expression distributions. (A) Time series of the underlying expression state of gene X in a

population of unsynchronized single cells, which switches back and forth between a low and high

state with mean µ1 and µ2, respectively. The color of cells at each time point corresponds to the

underlying expression state. (B) Population of individual cells shaded by expression state of gene

X at a snapshot in time. (C) Histogram of the observed expression level of gene X for the cell

population in (B).

Table 5 Number of DD genes identified in the hESC case study data for scDD, SCDE, and MAST.

Note that the Total for scDD includes genes detected as DD but not categorized.

scDD

Comparison DE DP DM DB DZ Total SCDE MAST

H1 vs NPC 1686 270 902 440 1603 5555 2921 5887

H1 vs DEC 913 254 890 516 911 5295 1616 3724

NPC vs DEC 1242 327 910 389 2021 5982 2147 5624

H1 vs H9 260 55 85 37 145 739 111 1119

Table 6 Number of DD genes identified in the myoblast and mESC case studies for scDD and

MAST. Note that the Total for scDD includes genes detected as DD but not categorized.

scDD

Comparison DE DP DM DB DZ Total MAST

Myoblast: T0 vs T72 312 44 200 36 1311 2134 2904

mESC: Serum vs 2i 5233 76 1259 1128 670 9130 9706

Differentially expressed genes detected by each method  

H1 vs DEC 

Cyclin genes expressed 
constitutively in hESCs, 
oscillatory in differentiated 
cell types 

PSMD12 encodes a subunit 
of the proteasome complex 
vital to maintenance of 
pluripotency and has shown 
decreased expression in 
differentiating hESCs  

Case Study 



Summary: Advantages & Limitations 

-  scDD is a novel statistical method that detects gene expression 
differences in scRNA-seq experiments while explicitly 
accounting for potential multimodality among expressed cells 

-  Comparable performance to existing methods at detecting mean 
shifts, but able to detect and characterize more complex 
differences that are masked under unimodal assumptions 

-  Modeling framework does not directly incorporate covariates and 
is limited to pairwise comparisons of biological conditions 

-  Genes are evaluated independently; does not aim to cluster cells 
into subtypes based on global gene expression changes 
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