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Differential Expression Analysis in bulk is blind to 
cellular heterogeneity 
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Cellular heterogeneity can lead to multi-modal 
expression distributions 
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Mechanisms leading to multi-modality 

Fig 2, Lahav et al. 2004, Nature Genetics 

Stochastic burst fluctuations 

Bistable Feedback loops 

Fig 3, Jubelin et al. 2013, PLOS Genetics 

	
 

Fig 2, Dobrzynski	 et al. 2012, CSMB 

Unsynchronized Oscillations 
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scRNA-seq exhibits substantial multi-
modality 
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Need to reassess the aim of single-cell DE 
analysis 

Fig 2C, Kharchenko et al. 2014, Nature Methods  

SCDE 

Fig 2A, Sengupta et al. 2016, BioRxiv 

NODES 
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Want to move beyond 
recapitulating what we 
can find in a bulk 
experiment 



scDD Framework 
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Preprocessing 

1.  Obtain log transformed counts normalized for library size 
2.  Filter genes that are detected in fewer than 25% of cells 
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Detection 
 

1.  Model expressed cells for each gene: Normal DPM  
2.  Quantify evidence of Differential Distributions (DD) 
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Dirichlet process 
mixture of normal 
distributions 
•  Flexible to 

account for 
multiple modes 

•  Incorporates 
uncertainty 
over the number 
of modes 

•  Number of 
modes inferred 
from the data 

 

Detection 
 

1.  Model expressed cells for each gene: Normal DPM  
2.  Quantify evidence of Differential Distributions (DD) 

  

 
Preprocessing 

1.  Obtain log transformed counts normalized for library size 
2.  Filter genes that are detected in fewer than 25% of cells 

 



scDD Framework 

5 

 

Detection 
 

1.  Model expressed cells for each gene: Normal DPM  
2.  Quantify evidence of Differential Distributions (DD) 

  

 
Preprocessing 

1.  Obtain log transformed counts normalized for library size 
2.  Filter genes that are detected in fewer than 25% of cells 

 

Compare two 
competing models: 
 
1.  Global model 

for all cells in 
both 
populations  

2.  Independent 
models for each 
biological 
condition 



scDD Framework 
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DE: Traditional Differential Expression

µ1 µ2

DP: Differential Proportion

µ1 µ2

DM: Differential Modality

µ1 µ2

DB: Both DM and DE

µ1 µ3 µ2

DZ: Differential proportion of Zeroes

0 µ1

DE: Traditional Differential 
Expression DP: Differential Proportion DM: Differential Modality 

DB: Both DM and Differential 
Component means 

Classification 
 

Classify significant DD genes into patterns DE, DP, DM, DB, DZ 
 

 

Detection 
 

1.  Model expressed cells for each gene: Normal DPM  
2.  Quantify evidence of Differential Distributions (DD) 

  

 
Preprocessing 

1.  Obtain log transformed counts normalized for library size 
2.  Filter genes that are detected in fewer than 25% of cells 

 



-  500 DD genes from each 
category, 8000 null genes 

-  Observations generated 
from mixtures of negative 
binomial distributions 

scDD detects and classifies complex patterns 
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Simulation 
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Table 2 Power to detect DD genes in simulated data

True Gene Category

Sample Size Method DE DP DM DB Overall (FDR)

scDD 0.893 0.418 0.898 0.572 0.695 (0.029)

50 SCDE 0.872 0.026 0.817 0.260 0.494 (0.004)

MAST 0.908 0.400 0.871 0.019 0.550 (0.026)

scDD 0.951 0.590 0.960 0.668 0.792 (0.031)

75 SCDE 0.948 0.070 0.903 0.387 0.577 (0.003)

MAST 0.956 0.633 0.943 0.036 0.642 (0.022)

scDD 0.972 0.717 0.982 0.727 0.850 (0.033)

100 SCDE 0.975 0.125 0.946 0.478 0.631 (0.003)

MAST 0.977 0.752 0.970 0.045 0.686 (0.022)

scDD 1.000 0.983 1.000 0.905 0.972 (0.035)

500 SCDE 1.000 0.855 0.998 0.787 0.910 (0.004)

MAST 1.000 0.993 1.000 0.170 0.791 (0.022)
Average power to detect simulated DD genes by true category. Averages are calculated over 20

replications. Standard errors were < 0.025 (not shown).

Table 3 Correct Classification Rate in simulated data

Gene Category

Sample Size DE DP DM DB

50 0.719 0.801 0.557 0.665

75 0.760 0.732 0.576 0.698

100 0.782 0.678 0.599 0.706

500 0.816 0.550 0.583 0.646
Average Correct Classification Rate for detected DD genes. Averages are calculated over 20

replications. Standard errors were < 0.025 (not shown).

Table 4 Average correct classification rates by component mean distance

Sample Gene component mean distance �µ

Size Category 2 3 4 5 6

DP 0.02 0.20 0.78 0.94 0.98

50 DM 0.10 0.23 0.59 0.81 0.89

DB 0.08 0.22 0.59 0.80 0.80

DP 0.02 0.18 0.77 0.94 0.97

75 DM 0.08 0.27 0.69 0.86 0.90

DB 0.09 0.29 0.71 0.83 0.84

DP 0.03 0.16 0.74 0.93 0.95

100 DM 0.10 0.32 0.76 0.87 0.91

DB 0.08 0.32 0.80 0.85 0.84

DP 0.01 0.15 0.72 0.91 0.93

500 DM 0.12 0.33 0.72 0.85 0.89

DB 0.03 0.43 0.85 0.85 0.85
Average Correct Classification Rates stratified by �µ. Averages are calculated over 20 replications.

Standard errors were < 0.025 (not shown).



scDD detects and classifies complex patterns 
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471 DD genes not detected by 
SCDE or MAST are enriched for 
complex patterns (1 gene 
categorized as DE) 
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Figure 1 Schematic of the presence of two cell states within a cell population which can lead to

bimodal expression distributions. (A) Time series of the underlying expression state of gene X in a

population of unsynchronized single cells, which switches back and forth between a low and high

state with mean µ1 and µ2, respectively. The color of cells at each time point corresponds to the

underlying expression state. (B) Population of individual cells shaded by expression state of gene

X at a snapshot in time. (C) Histogram of the observed expression level of gene X for the cell

population in (B).

Table 5 Number of DD genes identified in the hESC case study data for scDD, SCDE, and MAST.

Note that the Total for scDD includes genes detected as DD but not categorized.

scDD

Comparison DE DP DM DB DZ Total SCDE MAST

H1 vs NPC 1686 270 902 440 1603 5555 2921 5887

H1 vs DEC 913 254 890 516 911 5295 1616 3724

NPC vs DEC 1242 327 910 389 2021 5982 2147 5624

H1 vs H9 260 55 85 37 145 739 111 1119

Table 6 Number of DD genes identified in the myoblast and mESC case studies for scDD and

MAST. Note that the Total for scDD includes genes detected as DD but not categorized.

scDD

Comparison DE DP DM DB DZ Total MAST

Myoblast: T0 vs T72 312 44 200 36 1311 2134 2904

mESC: Serum vs 2i 5233 76 1259 1128 670 9130 9706

Differentially expressed genes detected by each method  

H1 vs DEC 

Cyclin genes expressed 
constitutively in hESCs, 
oscillatory in differentiated 
cell types 

PSMD12 encodes a subunit 
of the proteasome complex 
vital to maintenance of 
pluripotency and has shown 
decreased expression in 
differentiating hESCs  

Case Study 



Take-aways 

-  Bulk RNA-seq is blind to cellular heterogeneity, so differential 
expression analysis is only aimed at detecting changes in 
average expression level 

-  Single-cell data exhibits substantial multimodality; possible 
mechanisms include stochasticity, bistability, and oscillations 

-  scDD is a novel statistical framework and software that detects 
gene expression differences in scRNA-seq experiments while 
explicitly accounting for potential multimodality among 
expressed cells 

-  scDD has comparable performance to existing methods at 
detecting mean shifts, but able to detect and characterize 
more complex differences that are masked under unimodal 
assumptions 
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Learn More 
 
Preprint available on BioRxiv 
 
http://biorxiv.org/content/early/
2016/05/13/035501 
 
 
R package scDD available on 
GitHub 
 
https://github.com/kdkorthauer/scDD 
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