Exploiting heterogeneity in single-cell transcriptomic analyses: how to move beyond comparisons of averages

Keegan D. Korthauer, PhD Postdoctoral Research Fellow Dana-Farber Cancer Institute Harvard T. H. Chan School of Public Health @keegsdur

Cellular heterogeneity can lead to multi-modal expression distributions

(A) Expression States of Gene X for Individual Cells Over Time

Mechanisms leading to multi-modality

Fig 2, Dobrzynski et al. 2012, CSMB

Bistable Feedback loops P_{fliL}-gfp[AAV] P_{fliC}-gfp[AAV] 58.8 77.2 22.8 22.9 77.1 46 54 91.3 8.7 10.2 89.8 Cell count 10³ 0 10² 10³ 104 104 0 10² 105 **GFP** intensity Fig 3, Jubelin et al. 2013, PLOS Genetics

scRNA-seq exhibits substantial multimodality

Need to reassess the aim of single-cell DE analysis

Want to move beyond recapitulating what we can find in a bulk experiment

Fig 2A, Sengupta et al. 2016, BioRxiv

- **Preprocessing** Obtain log transformed counts normalized for library size
- Filter genes that are detected in fewer than 25% of cells 2.

Preprocessing

- 1. Obtain log transformed counts normalized for library size
- 2. Filter genes that are detected in fewer than 25% of cells

Detection

- 1. Model expressed cells for each gene: Normal DPM
- 2. Quantify evidence of Differential Distributions (DD)

Preprocessing

- 1. Obtain log transformed counts normalized for library size
- 2. Filter genes that are detected in fewer than 25% of cells

Detection

- 1. Model expressed cells for each gene: Normal DPM
- 2. Quantify evidence of Differential Distributions (DD)

Dirichlet process mixture of normal distributions

- Flexible to account for multiple modes
- Incorporates uncertainty over the number

of modes

 Number of modes inferred from the data

Preprocessing

- 1. Obtain log transformed counts normalized for library size
- 2. Filter genes that are detected in fewer than 25% of cells

Detection

- 1. Model expressed cells for each gene: Normal DPM
- 2. Quantify evidence of Differential Distributions (DD)

Compare two competing models:

- Global model for all cells in both populations
- 2. Independent models for each biological condition

Preprocessing

- 1. Obtain log transformed counts normalized for library size
- 2. Filter genes that are detected in fewer than 25% of cells

Detection

- 1. Model expressed cells for each gene: Normal DPM
- 2. Quantify evidence of Differential Distributions (DD)

Classification

Classify significant DD genes into patterns DE, DP, DM, DB, DZ

DP: Differential Proportion

DM: Differential Modality

DB: Both DM and Differential Component means

Simulation

scDD detects and classifies complex patterns

		ר	True Gene			
Sample Size	Method	DE	DP	DM	DB	Overall (FDR)
50	scDD	0.893	0.418	0.898	0.572	0.695 (0.029)
	SCDE	0.872	0.026	0.817	0.260	0.494 (0.004)
	MAST	0.908	0.400	0.871	0.019	0.550 (0.026)
75	scDD	0.951	0.590	0.960	0.668	0.792 (0.031)
	SCDE	0.948	0.070	0.903	0.387	0.577 (0.003)
	MAST	0.956	0.633	0.943	0.036	0.642 (0.022)
100	scDD	0.972	0.717	0.982	0.727	0.850 (0.033)
	SCDE	0.975	0.125	0.946	0.478	0.631 (0.003)
	MAST	0.977	0.752	0.970	0.045	0.686 (0.022)
500	scDD	1.000	0.983	1.000	0.905	0.972 (0.035)
	SCDE	1.000	0.855	0.998	0.787	0.910 (0.004)
	MAST	1.000	0.993	1.000	0.170	0.791 (0.022)

- 500 DD genes from each category, 8000 null genes
- Observations generated from mixtures of negative binomial distributions

Case Study scDD detects and classifies complex patterns

hECC turned

Differentially expressed genes detected by each method

			Comparison	DE	DP	DM	DB	DZ	Total	SCDE	MAST	
Н	1	H9	Undifferentiated	H1 vs NPC	1686	270	902	440	1603	5555	2921	5887
		H1 vs DEC	913	254	890	516	911	5295	1616	3724		
K	<u> </u>			NPC vs DEC	1242	327	910	389	2021	5982	2147	5624
NPC	DEC		Differentiated	H1 vs H9	260	55	85	37	145	739	111	1119

Take-aways

- Bulk RNA-seq is blind to cellular heterogeneity, so differential expression analysis is only aimed at detecting changes in average expression level
- Single-cell data exhibits substantial multimodality; possible mechanisms include **stochasticity**, **bistability**, **and oscillations**
- scDD is a novel statistical framework and software that detects gene expression differences in scRNA-seq experiments while explicitly accounting for potential multimodality among expressed cells
- scDD has comparable performance to existing methods at detecting mean shifts, but able to **detect and characterize more complex differences** that are masked under unimodal assumptions

Learn More

Preprint available on BioRxiv

http://biorxiv.org/content/early/ 2016/05/13/035501

R package scDD available on GitHub

https://github.com/kdkorthauer/scDD

Acknowledgements

UW Madison Biostatistics

Christina Kendziorski Yuan Li

Morgridge Institute

MORGRIDGE

Li-Fang Chu Ron Stewart James Thomson

UW Madison Statistics

Michael Newton

Contact

keegan@jimmy.harvard.edu

