108 100 18

HARVARD TH.CHAN

SCHOOL OF PUBLIC HEALTH

Abstract

Exploiting heterogeneity In single-cell transcriptomic analyses:
how to move beyond comparisons of averages

Keegan Korthauer'?', Li-Fang Chu*, Michael A. Newton3, Yuan Li3, James Thomson#, Ron M. Stewart*, and Christina Kendziorski?®

The ability to quantify cellular heterogeneity is a major advantage of single-cell
technologies. It is now possible to elucidate gene expression dynamics that
were invisible using bulk RNA-seq, such as the presence of distinct
expression states. However, statistical methods often treat cellular
heterogeneity as a nuisance. We have developed a novel method to
characterize differences in expression in the presence of distinct expression
states within and among biological conditions. This framework can detect
differential expression patterns under a wide range of settings. Compared to
alternative approaches, this method has higher power to detect subtle
differences in gene expression distributions that are more complex than a
mean shift, and can characterize those differences. The R package scDD
Implements the approach, and is available on Bioconductor [2].
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Differential Expression Analysis in Bulk

RNA-seq is blind to cellular heterogeneity
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In contrast to single-cell RNA-seq, which allows us to get a measurement for each
cell, differential expression (DE) analysis in traditional (or bulk) RNA-seq is blind to
any cellular heterogeneity. The illustration above shows an example where the bulk
RNA-seq experiment would not detect differential expression, but there is clearly a
different pattern of expression between the two populations. This type of pattern
may be of great biological significance, so it is important that DE methods for
scRNA-seq account for it. However, doing so is complicated by the fact that these
types of patterns result in multi-modal expression distributions, which are generally
not accommodated for in existing approaches.

scDD Algorithm

Preprocessing
1. Obtain log Expected Counts normalized for library size

Evaluate evidence of DD of

expressed cells using an

approximate Bayes Factor score

comparing:

« Global model for all cells

* Independent models for each
biological condition

2. Filter genes that are detected in fewer than 25% of cells

Detection

1. Model expressed cells for each gene: DPM of Normals
2. Quantify evidence of Differential Distributions (DD):
- BF with permutation for expressed component
-  GLM LRT for dropout component

Assess significance via permutation
test or (for large datasets) the
Kolmogorov-Smirnov test.

If expressed component does not
display significant DD, assess
evidence for differential proportion
of zeroes

Classification
Classify significant DD genes into patterns DE, DP, DM, DB, DZ

—

DE: Traditional Differential DP: Differential Proportion DM: Differential Modality DB: Both DM and Differential DZ: Differential Proportion of
Expression Component means Zeroes

The scDD [1] algorithm (summarized above) tests whether the distribution (possibly

multi-modal) of expression is different between biological conditions and classifies
genes into categories that summarize the salient characteristics of the differences.

Biological mechanisms leading to

multi-modality

Stochastic burst fluctuations Bistable Feedback loops
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Fig 2, Korthauer et al. 2016, Genome Biology [1]

Biological mechanisms such as stochastic burst-like fluctuations [3], unsynchronized
oscillations [4], and bistable feedback loops [5] (illustrated above) can give rise to a
mixed population of cells at multiple different expression states, which manifests as
multi-modal distributions. This multimodality complicates DE analysis methods for

single-cell, since most assume a parametric distribution with one mode representing
the expressed cells (such as SCDE [6] and MAST [7]).
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Fig 2, Dobrzynski et al. 2012, CSMB [4]

scDD detects and classifies
complex patterns

When simulating gene expression from

True Gene Category
Sample Size  Method DE DP DM DB Overall (FDR)

mixtures of negative binomial distributions that scDD | 0.693 0418 0.898 0.572 | 0.695 (0.029)
. . 50 SCDE | 0.872 0.026 0.817 0.260 | 0.494 (0.004)

represent the patterns deplCted above, scDD is MAST | 0.908 0400 0.871 0.019 | 0.550 (0.026)
: - scDD | 0.951 0590 0.960 0.668 | 0.792 (0.031)

comparable or slightly better at detecting the 5 ocoE | ooss 0070 0903 0387 | 07y (0003
DD genes that have an overall mean shift (as ST {0050 083 0o oue | Sem oo
_ _ scDD | 0972 0717 0.982 0.727 | 0.850 (0.033

shown in the table to the rlght) As eXpeCted, 100 SCDE | 0.975 0.125 0.946 0.478 | 0.631 (0.003)
however, it is superior at detecting the DB wbb Lot ooms o000 G908 | 0972 (e
CategOI’y, Wthh haS no Overa” mean Shlft 500 SCDE | 1.000 0.855 0.998 0.787 | 0.910 (0.004)

MAST | 1.000 0.993 1.000 0.170 | 0.791 (0.022)

In an analysis of human embryonic stem cell (hESC) types (detailed below), we
evaluated pairwise comparisons of four cell lines. ldentifying which genes are
expressed differently between these conditions can give insight into the
differentiation process. scDD generally detects more differential genes than other
methods, but the additional are enriched for complex patterns. As expected, cell
cycle and pluripotency genes are among those detected only by scDD.
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hESC types Differentially expressed genes detected by each method
Undifferentiated Comparison DE DP DM DB DZ Total | SCDE | MAST
H1 vs NPC 1686 270 902 440 1603 |5555 2921 5887
H1 vs DEC 913 254 890 516 911 529% 1616 3724
Differentiated NPC vs DEC | 1242 327 910 389 2021 5982 2147 5624
H1 vs H9 260 55 85 37 145 739 111 1119
H1vs DEC 471 DD genes not detected by
(A) scDD-exclusive Genes (B) Cell Cycle Genes SCDE or MAST are enriched for
DZ: SLAMF7 . DP: FASTKD3 CHEK2 CDK7 Complex patterns (1 gene
4 categorized as DE)
61 57 61
N “ 5 Cyclin genes expressed
. ) 2 21 | —> constitutively in hESCs,
2 JoE L N : oscillatory in differentiated
= L — T = DEC H1 DEC H1 cell types
% DB: NCOA3 (C) Pluripotency Genes
° FOXP1 6 PSMD12 PSMD12 encodes a subunit
6 61 | ' of the proteasome complex
" " = °] ,, Vital to maintenance of
241 41 pluripotency and has shown
2 2 g ' decreased expression in
N 5 . N Y ] differentiating hESCs
DEC H1 DEC H1 01 - - : :
DEC H1 DEC H1

scDD is a novel statistical framework and R package that detects gene
expression differences in scRNA-seq experiments while explicitly
accounting for potential multimodality among expressed cells. It has
comparable performance to alternative methods at detecting mean shifts, but
Is able to detect and characterize more complex differences that are
masked under unimodal assumptions.
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