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The ability to quantify cellular heterogeneity is a major advantage of single-cell 
technologies. It is now possible to elucidate gene expression dynamics that 
were invisible using bulk RNA-seq, such as the presence of distinct 
expression states. However, statistical methods often treat cellular 
heterogeneity as a nuisance. We have developed a novel method to 
characterize differences in expression in the presence of distinct expression 
states within and among biological conditions. This framework can detect 
differential expression patterns under a wide range of settings. Compared to 
alternative approaches, this method has higher power to detect subtle 
differences in gene expression distributions that are more complex than a 
mean shift, and can characterize those differences. The R package scDD 
implements the approach, and is available on Bioconductor [2]. 
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The scDD [1] algorithm (summarized above) tests whether the distribution (possibly 
multi-modal) of expression is different between biological conditions and classifies 
genes into categories that summarize the salient characteristics of the differences. 

Differential Expression Analysis in Bulk 
RNA-seq is blind to cellular heterogeneity 

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
Biological mechanisms such as stochastic burst-like fluctuations [3], unsynchronized 
oscillations [4], and bistable feedback loops [5] (illustrated above) can give rise to a 
mixed population of cells at multiple different expression states, which manifests as 
multi-modal distributions. This multimodality complicates DE analysis methods for 
single-cell, since most assume a parametric distribution with one mode representing 
the expressed cells (such as SCDE [6] and MAST [7]).  

Biological mechanisms leading to  
multi-modality 

 
 
 
 
 
 
 
 
In an analysis of human embryonic stem cell (hESC) types (detailed below), we 
evaluated pairwise comparisons of four cell lines. Identifying which genes are 
expressed differently between these conditions can give insight into the 
differentiation process. scDD generally detects more differential genes than other 
methods, but the additional are enriched for complex patterns. As expected, cell 
cycle and pluripotency genes are among those detected only by scDD. 
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

scDD detects and classifies 
 complex patterns 

scDD is a novel statistical framework and R package that detects gene 
expression differences in scRNA-seq experiments while explicitly 
accounting for potential multimodality among expressed cells. It has 
comparable performance to alternative methods at detecting mean shifts, but 
is able to detect and characterize more complex differences that are 
masked under unimodal assumptions.  

Summary 

 
 
 
 
 
 
 
 
 
 
 
 
In contrast to single-cell RNA-seq, which allows us to get a measurement for each 
cell, differential expression (DE) analysis in traditional (or bulk) RNA-seq is blind to 
any cellular heterogeneity. The illustration above shows an example where the bulk 
RNA-seq experiment would not detect differential expression, but there is clearly a 
different pattern of expression between the two populations. This type of pattern 
may be of great biological significance, so it is important that DE methods for 
scRNA-seq account for it. However, doing so is complicated by the fact that these 
types of patterns result in multi-modal expression distributions, which are generally 
not accommodated for in existing approaches. 

scDD Algorithm 

Website: 
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Table 2 Power to detect DD genes in simulated data

True Gene Category

Sample Size Method DE DP DM DB Overall (FDR)

scDD 0.893 0.418 0.898 0.572 0.695 (0.029)

50 SCDE 0.872 0.026 0.817 0.260 0.494 (0.004)

MAST 0.908 0.400 0.871 0.019 0.550 (0.026)

scDD 0.951 0.590 0.960 0.668 0.792 (0.031)

75 SCDE 0.948 0.070 0.903 0.387 0.577 (0.003)

MAST 0.956 0.633 0.943 0.036 0.642 (0.022)

scDD 0.972 0.717 0.982 0.727 0.850 (0.033)

100 SCDE 0.975 0.125 0.946 0.478 0.631 (0.003)

MAST 0.977 0.752 0.970 0.045 0.686 (0.022)

scDD 1.000 0.983 1.000 0.905 0.972 (0.035)

500 SCDE 1.000 0.855 0.998 0.787 0.910 (0.004)

MAST 1.000 0.993 1.000 0.170 0.791 (0.022)
Average power to detect simulated DD genes by true category. Averages are calculated over 20

replications. Standard errors were < 0.025 (not shown).

Table 3 Correct Classification Rate in simulated data

Gene Category

Sample Size DE DP DM DB

50 0.719 0.801 0.557 0.665

75 0.760 0.732 0.576 0.698

100 0.782 0.678 0.599 0.706

500 0.816 0.550 0.583 0.646
Average Correct Classification Rate for detected DD genes. Averages are calculated over 20

replications. Standard errors were < 0.025 (not shown).

Table 4 Average correct classification rates by component mean distance

Sample Gene component mean distance �µ

Size Category 2 3 4 5 6

DP 0.02 0.20 0.78 0.94 0.98

50 DM 0.10 0.23 0.59 0.81 0.89

DB 0.08 0.22 0.59 0.80 0.80

DP 0.02 0.18 0.77 0.94 0.97

75 DM 0.08 0.27 0.69 0.86 0.90

DB 0.09 0.29 0.71 0.83 0.84

DP 0.03 0.16 0.74 0.93 0.95

100 DM 0.10 0.32 0.76 0.87 0.91

DB 0.08 0.32 0.80 0.85 0.84

DP 0.01 0.15 0.72 0.91 0.93

500 DM 0.12 0.33 0.72 0.85 0.89

DB 0.03 0.43 0.85 0.85 0.85
Average Correct Classification Rates stratified by �µ. Averages are calculated over 20 replications.

Standard errors were < 0.025 (not shown).

When simulating gene expression from  
mixtures of negative binomial distributions that 
represent the patterns depicted above, scDD is 
comparable or slightly better at detecting the 
DD genes that have an overall mean shift (as 
shown in the table to the right). As expected, 
however, it is superior at detecting the DB 
category, which has no overall mean shift.  

	

Fig 2, Lahav et al. 2004, Nature Genetics [3] 

Stochastic burst fluctuations Bistable Feedback loops 

Fig 3, Jubelin et al. 2013, PLOS Genetics [5] 

	
 

Fig 2, Dobrzynski	 et al. 2012, CSMB [4] 

Unsynchronized Oscillations 
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Modality in scRNA-seq 
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Preprocessing 

 1.  Obtain log Expected Counts normalized for library size 
 2.  Filter genes that are detected in fewer than 25% of cells 

 
 
 
 

Detection 
 

1.  Model expressed cells for each gene: DPM of Normals 
2.  Quantify evidence of Differential Distributions (DD): 

-  BF with permutation for expressed component 
-  GLM  LRT for dropout component 

  
Classification 

 

Classify significant DD genes into patterns DE, DP, DM, DB, DZ 
 

DE: Traditional Differential Expression

µ1 µ2

DP: Differential Proportion

µ1 µ2

DM: Differential Modality

µ1 µ2

DB: Both DM and DE

µ1 µ3 µ2

DZ: Differential proportion of Zeroes

0 µ1

DE: Traditional Differential 
Expression 

DP: Differential Proportion DM: Differential Modality DB: Both DM and Differential 
Component means 

DZ: Differential Proportion of 
Zeroes 

Evaluate evidence of DD of 
expressed cells using an 
approximate Bayes Factor score 
comparing: 
•  Global model for all cells 
•  Independent models for each 

biological condition 
 
Assess significance via permutation 
test or (for large datasets) the 
Kolmogorov-Smirnov test. 
 
If expressed component does not 
display significant DD, assess 
evidence for differential proportion 
of zeroes 
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SCDE or MAST are enriched for 
complex patterns (1 gene 
categorized as DE) 
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Figure 1 Schematic of the presence of two cell states within a cell population which can lead to

bimodal expression distributions. (A) Time series of the underlying expression state of gene X in a

population of unsynchronized single cells, which switches back and forth between a low and high

state with mean µ1 and µ2, respectively. The color of cells at each time point corresponds to the

underlying expression state. (B) Population of individual cells shaded by expression state of gene

X at a snapshot in time. (C) Histogram of the observed expression level of gene X for the cell

population in (B).

Table 5 Number of DD genes identified in the hESC case study data for scDD, SCDE, and MAST.

Note that the Total for scDD includes genes detected as DD but not categorized.

scDD

Comparison DE DP DM DB DZ Total SCDE MAST

H1 vs NPC 1686 270 902 440 1603 5555 2921 5887

H1 vs DEC 913 254 890 516 911 5295 1616 3724

NPC vs DEC 1242 327 910 389 2021 5982 2147 5624

H1 vs H9 260 55 85 37 145 739 111 1119

Table 6 Number of DD genes identified in the myoblast and mESC case studies for scDD and

MAST. Note that the Total for scDD includes genes detected as DD but not categorized.

scDD

Comparison DE DP DM DB DZ Total MAST

Myoblast: T0 vs T72 312 44 200 36 1311 2134 2904

mESC: Serum vs 2i 5233 76 1259 1128 670 9130 9706

Differentially expressed genes detected by each method  

H1 vs DEC 

Cyclin genes expressed 
constitutively in hESCs, 
oscillatory in differentiated 
cell types 

PSMD12 encodes a subunit 
of the proteasome complex 
vital to maintenance of 
pluripotency and has shown 
decreased expression in 
differentiating hESCs  


