Accurate inference of DNA methylation data: Statistical challenges lead to biological insights

Keegan Korthauer, PhD Postdoctoral Research Fellow

PQG Working Group Seminar Harvard T.H. Chan School of Public Health 9 April 2019

Epigenetic Variation

image source: genomenewsnetwork.org

Neuron

Bone cell

Cardiac muscle cell

Skeletal muscle cells

Smooth muscle cell

image source: ck12.org

DNA methylation: the 5th base?

Role of DNA methylation in transcriptional regulation

Correlation or causation?

Methylation difference (proportion estimate)

First genome-wide study of causality

"promoter DNA methylation is **not generally sufficient** for transcriptional inactivation"

Forcible methylation of promoters

Conclusion: methylation not generally sufficient for gene repression

Figure 5 from Ford et al., 2017 (bioRxiv)

Statistical challenges

Challenges of methylation sequencing analysis

- 1. Small sample sizes
- 2. Region-level inference
- 3. Biological and spatial variability

Whole genome bisulfite sequencing (WGBS)

Differential methylation of individual CpGs

CpG 1

Adapted from Jaffe et al., 2012 (Int J Epidemiol)

CpG 2

Previous methods: Grouping significant CpGs

Genernie loodt

Examples:

- o Bsmooth (Hansen et al., 2012)
- o DSS (Feng et al., 2014; Wu et al., 2015) used by Ford et al.

Error rate not controlled at the region level

Spatial Variability

Genomic location

Biological variability

Adapted from Hansen et al., 2011 (Nature Genetics)

Biological variability

Methodology

dmrseq: two-stage approach

dmrseq: (1) Detect de novo candidate regions

chr17: 57,407,455 – 57,409,984 (width = 2,530)

dmrseq: (1) Detect de novo candidate regions

chr17: 57,407,455 – 57,409,984 (width = 2,530)

dmrseq: (2) Assess region-level signal

- o Formulate region-level summary statistic
- Compare region statistics against null permutation distribution to evaluate significance

Region-level modeling

CpG level:

$$\begin{split} M_{ijr} | N_{ijr}, p_{ijr} &\sim Bin(N_{ijr}, p_{ijr}) \\ p_{ijr} &\sim Beta(a_{irs}, b_{irs}) \\ \pi_{irs} &= \frac{a_{irs}}{(a_{irs} + b_{irs})} \end{split}$$

 M_{ijr} = methylated read count N_{ijr} = total coverage P_{ijr} = methylation proportion π_{irs} = methylation proportion for condition s

i indexes CpGs

j indexes samples, where $s \in C_s$ *s* indicates biological condition

Region level:

$$g(\boldsymbol{\pi}) = \boldsymbol{X}\boldsymbol{\beta}_{r}$$

$$= \sum_{l=1}^{L_{r}} \beta_{0lr} \mathbf{1}_{[i=l]} + X_{j} \beta_{1r}$$

$$\text{loci-specific intercept}$$

$$H_{0}: \beta_{1r} = 0$$

Region-level model fitting

Generalized Least Squares (GLS) with variance stabilizing transformation:

arcsine link transformation (Park & Wu 2016)

$$Z_{ijr} = \arcsin(2M_{ijr}/N_{ijr} - 1)$$

$$Var(M_{ijr}/N_{ijr}) \propto \pi_{ijr}(1 - \pi_{ijr})$$
but $Var(Z_{ijr}) \approx \frac{1}{N_{ijr}} \frac{a_{irs} + b_{irs} + N_{ijr}}{a_{irs} + b_{irs} + 1}$ \downarrow \downarrow Variance depends on meanVariance independent of mean

Region-level model fitting

Generalized Least Squares (GLS) with variance stabilizing transformation:

arcsine link transformation (Park & Wu 2016)

$$Z_{ijr} = \arcsin(2M_{ijr}/N_{ijr} - 1)$$

$$Var(M_{ijr}/N_{ijr}) \propto \pi_{ijr}(1 - \pi_{ijr})$$
but $Var(Z_{ijr}) \approx \frac{1}{N_{ijr}} \frac{a_{irs} + b_{irs} + N_{ijr}}{a_{irs} + b_{irs} + 1}$ \downarrow \downarrow Variance depends on meanVariance independent of mean

$$Z_r = X\beta_r + \epsilon_r$$

where $E[\epsilon_r] = 0$ and $Var[\epsilon_r] = V_r$
 $\hat{\beta}_r = (X^t V_r^{-1} X)^{-1} V_r^{-1} X^t V_r^{-1} Z_r$

Account for variability across samples and locations

(1) Correlation: Continuous Autoregressive (CAR) model

$$\rho(Z_{ijr}, Z_{kjr}) = e^{-\phi_r |t_{ir} - t_{kr}|}$$

 t_{ir} = genomic location of CpG *i*

(2) Variability dependent on coverage

$$Var(Z_{ijr}) \propto \frac{1}{N_{i.r}}$$

(3) Within sample correlation

Independent samples

$$Cov(Z_{ijr}, Z_{ij'r}) = 0$$

Covariance Structure

Within Sample:

with *ik*th element of R_{jr} : $\begin{cases} \hat{R}_{jr} \}_{ik} = \frac{e^{-\hat{\phi}_r |t_{ir} - t_{kr}|}}{\sqrt{N_{i.r}N_{k.r}}} \\ Cov(Z_{ijr}, Z_{ij'r}) = 0 \end{cases}$

Covariance Structure

Within Sample:

 $\overset{\wedge}{Cov}(Z_{jr}) = \hat{V}_{jr} = \overset{\wedge}{\sigma}_{r}^{2} \hat{R}_{jr}$ with ik^{th} element of R_{jr} : $\{\hat{R}_{jr}\}_{ik} = \frac{e^{-\hat{\phi}_r |t_{ir} - t_{kr}|}}{\sqrt{N_{i.r} N_{k.r}}}$ Between Sample: $Cov(Z_{ijr}, Z_{ij'r}) = 0$ $\hat{\boldsymbol{\beta}}_{r} = (X^{t}V_{r}^{-1}X)^{-1}V_{r}^{-1}X^{t}V_{r}^{-1}Z_{r}$ Wald Test = $\frac{\hat{\beta_{1r}}^2}{Var(\hat{\beta_{1r}})}$

Evaluation

Simulation to assess FDR and power

Simulation to assess FDR and power

Accurate FDR control in simulation

Region-level modeling improves power to detect DMRs

Statistic

- --- Region level model
- Mean of CpG Statistics
- Sum of CpG Statistics

High sensitivity and specificity in simulation

Example: highly ranked DMR across all methods

Example: dmrseq accounts for sample variability

Example: dmrseq accounts for sample variability

Roadmap case study: Tissue-specific DMRs

Validation of DMRs in promoter regions

Validation of DMRs in promoter regions

Odds Statistic:

 $\frac{\text{Expected direction}}{\text{Unexpected Direction}} = \frac{\text{II} + \text{IV}}{\text{I} + \text{III}} = \frac{47 + 223}{14 + 23} = 7.30$

Increased methylation, Decreased expression

Validation of DMRs in promoter regions

Biological insights

Landmark study finds methylation not generally sufficient to repress gene expression

Figure 5 from Ford et al., 2017 (bioRxiv)

Methylation of promoters overwhelmingly represses gene expression

Methylation of promoters overwhelmingly represses gene expression

Methylation of promoters overwhelmingly represses gene expression

Enrichment increases with significance level

Top-ranked regions found exclusively by each method

Korthauer & Irizarry, 2018 (bioRxiv)

dmrseq shows DNA methylation reduces H3K4 trimethylation

DSS

dmrseq

Korthauer & Irizarry, 2018 (bioRxiv)

dmrseq shows DNA methylation reduces RNA Pol II activity

Korthauer & Irizarry, 2018 (*bioRxiv*)

dmrseq R package

dmrseq

Detection and inference of differentially methylated regions from Whole Genome Bisulfite Sequencing

Bioconductor version: Release (3.8)

This package implements an approach for scanning the genome to detect and perform accurate inference on differentially methylated regions from Whole Genome Bisulfite Sequencing data. The method is based on comparing detected regions to a pooled null distribution, that can be implemented even when as few as two samples per population are available. Region-level statistics are obtained by fitting a generalized least squares (GLS) regression model with a nested autoregressive correlated error structure for the effect of interest on transformed methylation proportions.

Author: Keegan Korthauer <keegan at jimmy.harvard.edu>, Sutirtha Chakraborty <statistuta at gmail.com>, Yuval Benjamini <yuvalbenj at gmail.com>, Rafael Irizarry <rafa at jimmy.harvard.edu>

Maintainer: Keegan Korthauer <keegan at jimmy.harvard.edu>

dmrseq R package

dmrseq

Detection and inference of differentially meth Genome Bisulfite Sequencing

Bioconductor version: Release (3.8)

This package implements an approach for scanning the genom on differentially methylated regions from Whole Genome Bisul on comparing detected regions to a pooled null distribution, th as two samples per population are available. Region-level stat least squares (GLS) regression model with a nested autoregre effect of interest on transformed methylation proportions.

Author: Keegan Korthauer <keegan at jimmy.harvard.edu>, S gmail.com>, Yuval Benjamini <yuvalbenj at gmail.com>, Rafa

Maintainer: Keegan Korthauer <keegan at jimmy.harvard.edu

1 Quick start

2 How to get help for dmrseq

3 Input data

4 Differentially Methylated Regions

5 Exploring and exporting results

5.1 Explore how many regions were significant

5.2 Hypo- or Hyper- methylation?

5.3 Plot DMRs

5.4 Plot distribution of methylation values and coverage

5.5 Exporting results to CSV files

5.6 Extract raw mean methylation differences

6 Simulating DMRs

7 Session info

References

Exploring and exporting results

5.1 Explore how many regions were significant

How many regions were significant at the FDR (q-value) cutoff of 0.05? We can find this by counting how many values in the qval column of the results data.frame were less than 0.05. You can also subset the regions by an FDR cutoff.

sum(regions\$qval < 0.05)</pre>

[1] 144

5

select just the regions below FDR 0.05 and place in a new data.frame sigRegions <- regions[regions\$qval < 0.05,]</pre>

5.2 Hypo- or Hyper- methylation?

You can determine the proportion of regions with hyper-methylation by counting how many had a positive direction of effect (positive statistic).

sum(sigRegions\$stat > 0) / length(sigRegions)

[1] 0.25

To interpret the direction of effect, note that for a two-group comparison **dmrseq** uses alphabetical order of the covariate of interest. The condition with a higher alphabetical rank will become the reference category. For example, if the two conditions are "A" and "B", the "A" group will be the reference category, so a positive direction of effect means that "B" is hypor-methylated relative to "A".

5.3 Plot DMRs

dmrseq R package

dmrseq

Detection and inference of differentially meth Genome Bisulfite Sequencing

Bioconductor version: Release (3.8)

This package implements an approach for scanning the genom on differentially methylated regions from Whole Genome Bisul on comparing detected regions to a pooled null distribution, th as two samples per population are available. Region-level stat least squares (GLS) regression model with a nested autoregre effect of interest on transformed methylation proportions.

Author: Keegan Korthauer <keegan at jimmy.harvard.edu>, S gmail.com>, Yuval Benjamini <yuvalbenj at gmail.com>, Rafa

Maintainer: Keegan Korthauer <keegan at jimmy.harvard.edu

1 Quick start

2 How to get help for dmrseq

3 Input data

4 Differentially Methylated Regions

5 Exploring and exporting results

5.1 Explore how many regions were significant

5.2 Hypo- or Hyper- methylation?

5.3 Plot DMRs

5.4 Plot distribution of methylation values and coverage

5.5 Exporting results to CSV files

5.6 Extract raw mean methylation differences

6 Simulating DMRs

7 Session info

References

Exploring and exporting results

5.1 Explore how many regions were significant

How many regions were significant at the FDR (q-value) cutoff of 0.05? We can find this by counting how many values in the qval column of the results data.frame were less than 0.05. You can also subset the regions by an FDR cutoff.

sum(regions\$qval < 0.05)</pre>

[1] 144

5

select just the regions below FDR 0.05 and place in a new data.frame
sigRegions <- regions[regions\$qval < 0.05,]</pre>

5.2 Hypo- or Hyper- methylation?

You can determine the proportion of regions with hyper-methylation by counting how many had a positive direction of effect (positive statistic).

sum(sigRegions\$stat > 0) / length(sigRegions)

[1] 0.25

To interpret the direction of effect, note that for a two-group comparison **dmrseq** uses alphabetical order of the covariate of interest. The condition with a higher alphabetical rank will become the reference category. For example, if the two conditions are "A" and "B", the "A" group will be the reference category, so a positive direction of effect means that "B" is hyper-methylated relative to "A". Conversely, a negative direction of effect means that "B" is hypo-methylated relative to "A".

5.3 Plot DMRs

- Reproducible analyses from Korthauer et al. (2018, *Biostatistics*) and Korthauer & Irizarry (2018, *bioRxiv*):

Acknowledgements

CENTER for FUNCTIONAL CANCER EPIGENETICS

Harvard Biostatistics & DFCI Data Sciences

Rafael Irizarry

Claire Duvallet Stephanie Hicks Patrick Kimes Yered Pita-Juarez Alejandro Reyes Chinmay Shukla Mingxiang Teng

Collaborators

Sutirtha Chakraborty Yuval Benjamini

Data

<u>Ryan Lister</u> <u>Ethan Ford</u>

keegan@jimmy.harvard.edu
@keegankorthauer
kkorthauer.org

bioRxiv

