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INTRODUCTION  
 
Cancer arises from the accumulation of causal somatic mutations (termed 
drivers) that confer a selective advantage; possible forms of selective 
advantage are activation of proliferation signals, suppression of apoptosis 
signals, or suppression of DNA repair mechanisms.  Further understanding 
of these processes and the genes involved will provide valuable insight into 
tumor biology as well as new therapeutic potentials.  Thus, it is of great 
interest to separate the driver mutations that contribute to tumorigenesis 
from those random passenger mutations that are irrelevant to the cancer 
phenotype.  
Cancer genome sequencing projects, such as The Cancer Genome Atlas 
(TCGA) project, have identified somatic mutations in the exomes of 
hundreds of patients for several cancer types, but statistical methods for 
prioritizing these mutations are needed to accurately infer driver gene 
status. 

 

 

 

 

 

Existing methods for driver gene identification often rely on recurrence-
based criteria, which infer that a gene is a driver if it is mutated in 
significantly more patients than expected according to a background 
mutation model.  Background models considered to date include factors 
such as mutation type and nucleotide context.  Table 1 (above) shows the 
mutation type and nucleotide context factors adjusted for in the background 
mutation model of Youn and Simon (2011). 

These models do not, however, adjust for region-specific factors such as 
replication-timing, which is known to be associated with somatic mutation 
rate.  Here, we extend the background mutation model of Youn and Simon 
(2011) to include adjustment for replication timing. 

An integrative approach for the identification of somatic mutations that drive cancer 

METHODS  
 

•  Existing methods for identifying driver genes that rely 
primarily on recurrence criteria suffer from (1) inadequate 
background mutation models and (2) ignoring information 
about the potential functional effect of a mutation by 
treating all mutations of a given type equally. 

•  We have developed a mixture model framework to account 
for both evidence of recurrence under an improved 
background model and functional impact criteria in 
assessing driver activity of genes using somatic mutation 
data.  Simulation studies are underway to evaluate power 
and type I error. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

ABSTRACT 
Identifying and prioritizing somatic mutations is an important  
and challenging area of cancer research that can provide new 
insights into gene function as well as new targets for drug 
development.  
 
Most methods for prioritizing mutations rely primarily on 
recurrence-based criteria, where a gene is identified as having a 
causal mutation (driver) if it is altered in significantly more patients 
than expected according to a background model describing 
random (passenger) mutations.  Although useful, the background 
models considered to date do not accommodate gene-specific 
features that are known to have a significant effect on mutation 
rate, such as replication timing.  Furthermore, these methods do 
not incorporate information concerning the likelihood that a given 
mutation is functional.  
 
Here we develop an integrative approach that uses an improved 
background mutation model and incorporates both recurrence 
and functional impact criteria for inferring driver gene status.  
Applying this model to data from The Cancer Genome Atlas 
(TCGA) Ovarian project, we identify several genes as drivers that 
were not identified based on recurrence criteria alone.  
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CASE STUDY RESULTS 

•  Mixture model framework 

j   = sample                              nkt   = # possible mutations of type t  at position k
k   = position                            mt   =  relative rate of mutation type t
t    = mutation type                   sk    =  relative rate of replication timing region at k
qj  = mutation rate sample j      Xjk  =  mutation status of sample j, position k
Assume

            Pr(Xjk =1) = nktqjmtskt∑ ≡ bjk

j    :   sample                                                 g  :   gene       
Xjg :   mutation status gene g, sample j         bjg :   background mutation rate gene g, sample j
Zg   :   driver status gene g                            djg :   driver mutation rate gene g, sample j
p0   :   prior probability to be passenger        p1   :   prior probability to be driver

Assume:
      Xjg |  Zg = 0 ~ Bern(bjg )
      Xjg |  Zg =1 ~ Bern(djg )

 Then Xjg ~ p0bjg
X jg (1− bjg )1−X jg + p1djg

X jg (1− djg )1−X jg

where b jg  comes from the background mutation model, summing over all positions in gene g,  

and djg ~ Beta(α, β),  truncated to satisfy constraint djg > 1
J bjg

j
∑ = b.g  and where α  and β  are 

elicited from a set of putative driver genes in Vogelstein et al. (2013) and their mutational 
frequencies in the COSMIC (Catalogue of Somatic Mutations in Cancer).
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•  Posterior probability of driver activity 

We considered the somatic mutation data from the TCGA ovarian cohort, 
publicly available from http://cancergenome.nih.gov/.  This dataset 
consists of somatic mutation calls for the exomes of 316 patients between 
normal blood and tumor tissue samples.  Each somatic mutation is 
annotated for the sample(s) in which it occurs, its chromosome and base 
pair position, the gene in which it is located, the allele found in the 
reference genome, the specific nucleotide change, and the type of 
mutation (silent, missense, frameshift indel, inframe indel).   
 

We observe that in this sample there are a total of 3,960 silent mutations 
located in 3,192 genes and 14,710 nonsilent mutations located in 8,181 
genes.  The median (range) total number of mutations per sample is 59 
(8-193).  The median (range) number of silent mutations per sample is 13 
(0-41) and the median (range) number of nonsilent mutations per sample 
is 41 (6-161).  In Figure 4 we see that the distribution of nonsilent 
mutations per sample is right-skewed, with a few individuals containing 
over a hundred nonsilent mutations. 

Table 2 shows the 29 genes with posterior probability greater than 0.95 
of being a driver, along with the number of samples in the TCGA cohort 
with at least one nonsilent mutation in that gene, and whether or not the 
gene was found significant by recurrence criteria alone using the 
background mutation model in Youn and Simon (2011). 

In addition to using recurrence criteria as evidence for selection, we 
would like to prioritize mutations based on their predicted functional 
impact.  Several variant impact predictors have been developed, but 
here we focus on SIFT (Sorting Intolerant From Tolerant) scores, which 
represent the predicted likelihood that a mutation is deleterious. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2 displays the observed distribution of SIFT scores in the TCGA 
ovarian cohort.  We assume that the distributions of both mutational 
frequencies and SIFT scores differ for driver versus passenger 
mutations and take advantage of this in order to make inference about 
driver gene activity.  Recurrence and functional impact criteria are 
combined using a mixture model framework.  

•  Background Mutation Model 
The background mutation model of Youn and Simon assumes (1) 
whether or not a mutation generated from the background model is 
silent or not is determined by the genetic code, (2) the relative 
frequencies of mutation types are constant across samples, and (3) the 
probability of mutation at a given site depends on the possible mutation 
types and their nucleotide context, the sample, and the timing of 
replication for that site. 
 

 
 

 
 
 
 
 
 
 

Replication timing data was obtained from Koren et al. (2012) and used 
to map each position of the exome to one of three replication timing 
categories (Early, Middle, and Late), defined by splitting on the tertiles of 
the observed genome-wide distribution. 
 

To fit the background model, we obtain method of moments estimates 
for the relative rates of each of the 8 mutation types in Table 1, as well 
as the relative rates of mutation for the three replication timing 
categories.  Empirical Bayes methods are used to estimate the 
distribution of the sample-specific overall mutation rates.  Obtain gene-
level estimates of the probability of mutation by summing over all 
mutation types and positions in the gene, and then integrating over the 
distribution of sample-specific rates. 

Recurrence component: 

Sjg :  functional impact score (SIFT) sample j, gene g         

f b  :   distribution of SIFT scores for background mutations                            
f d  :   distribution of SIFT scores for driver mutations      

Assume:
      S jg |  X jg = 0 ~  point mass at -1

      S jg |  X jg =1,  Zg = 0 ~ f b 
      S jg |  X jg =1,  Zg =1 ~ f d 

where f b  is estimated from scoring a random sample of mutations simulated from the background
mutation model, and f d  is estimated by nonparametric spline regression on the ratio of the 
simulated null to the observed full distribution f of scores across bins of the score range (see Efron 
(2001)).  These components are illustrated in Figure 3.
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For an independent sample of J  tumors, the prior predictive distributions for the mutational status 
and functional impact score vectors of gene g are

      P(Sg = s,  Xg = x  |  Zg = 0) = ( f b(sj )bjg )x j (1− bjg )1−x j

j
∏

      P(Sg = s,  Xg = x  |  Zg =1) =
[1−F(A,B)(b.g )]B(A,B)
[1−F(α,β ) (b.g )]B(α,β)

f d (sj )
x j

j
∏

where parameters A =∑x j +α  and B= J −∑x j +β,  F(A,B)(y) is the cumulative distribution function 
of the Beta(A,B) distribution, and B is the Beta function  The posterior probability of gene g being 
a driver may be calculated using Bayes rule:

P(Zg =1 |  Sg = s,  Xg = x  ) =

        
p1[1−F(A,B)(b.g )]B(A,B) f d (sj )

x j

j
∏

p1[1−F(A,B)(b.g )]B(A,B) f d (sj )
x j

j
∏ + p0[1−F(α,β ) (b.g )]B(α,β) ( f b(sj )bjg )x j (1− bjg )1−x j

j
∏
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Table 1  

Gene Posterior Probability Samples mutated Significant with YS?

TP53 1.000 299 Yes
BRCA1 1.000 11 Yes
NF1 1.000 4 Yes
CSMD3 1.000 19 Yes
CDK12 1.000 9 Yes
MYO3A 0.993 7 No
RB1 0.987 6 No
MYH1 0.985 9 No
EFEMP1 0.985 5 Yes
CCAR1 0.980 6 No
PROKR2 0.976 12 No
PPP1R3A 0.955 8 Yes
MAP3K19 0.992 7 No
TTN 0.985 58 Yes
LATS1 0.983 6 No

Table 3: Genes with posterior probability > 0.95 of being a driver

Mutation Category Nucleotide Context Type

Transition A:T ! G:C 1
C:G ! T:A (non CpG) 2
C:G ! T:A (CpG) 3

Transversion A:T ! C:G or T:A 4
C:G ! A:T or G:C (non CpG) 5
C:G ! A:T or G:C (CpG) 6

Other (Indel) In Frame 7
Frameshift 8

6 Discussion

Summarize model results and performance. Discuss advantages disadvantages of approach and
what is novel. Simulation studies of model performance? ...

So far, only considered one gene at a time. Great gains to be made by incorporating pathway
information, as could take advantage of patterns of mutation within pathway as evidence of driver
activity, as well as further characterizing functional impact of groups of mutations.

Ultimately want to expand this mixture model framework to allow inference across dependent
sets of genes. ... Several methods have been developed to search for groups of genes that are
recurrently altered across a set of patients (Torkamani and Schork, 2009; Boca et al., 2010;
Ciriello et al., 2012; Vandin et al., 2012).
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Figure 1 shows that later-replicating regions are associated with an 
increased somatic mutation rate in the TCGA ovarian cohort. 
 

Figure 2  
Histogram of observed SIFT scores
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The set of silent mutations and all sequences containing at most one 
nonsilent mutation were used to estimate parameters in the background 
mutation model.  The background mutation model was then used to 
compute the sample- and gene-specific background mutation 
probabilities      , and then posterior probabilities of driver activity were 
computed for each gene. 
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Figure 3 
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Estimated non−null Table 2 

Gene Posterior # Samples Significant by
Probability Mutated Youn & Simon?

TP53 1.000 304 Y
BRCA1 1.000 11 Y
CDK12 1.000 9 Y
NF1 1.000 13 Y
CSMD3 1.000 19 Y
MYO3A 0.997 7 N
MAP3K19 0.997 7 N
RB1 0.995 6 N
EFEMP1 0.995 5 Y
LATS1 0.994 6 N
MYH1 0.994 9 N
PROKR2 0.993 4 N
CCAR1 0.993 6 N
CREBBP 0.984 7 N
PPP1R3A 0.983 8 Y
TTN 0.981 67 Y
KRT72 0.976 4 N
DUSP19 0.975 4 Y
TBX5 0.974 5 Y
STK10 0.974 5 N
OR11G2 0.971 3 N
PGAP1 0.971 5 N
EPHA7 0.971 7 Y
ATG3 0.969 3 N
PAX3 0.963 5 N
ADAMTS14 0.962 7 N
VSIG2 0.961 4 Y
MYH11 0.959 7 N
MC2R 0.955 3 N

Table 4: Genes with posterior probability > 0.95 of being a driver
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